Skip to content

[Do Not Merge] model : LFM2.5-Audio-1.5B#18641

Draft
tdakhran wants to merge 32 commits intoggml-org:masterfrom
tdakhran:tarek/feat/os-lfm2.5-audio-1.5b-upstream
Draft

[Do Not Merge] model : LFM2.5-Audio-1.5B#18641
tdakhran wants to merge 32 commits intoggml-org:masterfrom
tdakhran:tarek/feat/os-lfm2.5-audio-1.5b-upstream

Conversation

@tdakhran
Copy link
Contributor

@tdakhran tdakhran commented Jan 6, 2026

Liquid AI released LFM2.5-Audio-1.5B.

LFM2.5-Audio-1.5B is Liquid AI's updated end-to-end audio foundation model. Key improvements include a custom, LFM based audio detokenizer, llama.cpp compatible GGUFs for CPU inference, and better ASR and TTS performance.

This PR is intended to provide a functional implementation in llama.cpp until necessary infrastructure is implemented.
The plan is to split and merge it into upstream in smaller chunks, while keeping and tracking functional implementation here. It will be rebased from time to time.

GGUFs, precompiled runners, and instructions, live in https://huggingface.co/LiquidAI/LFM2.5-Audio-1.5B-GGUF.

Merge plan:

Demo of capabilities (watch with audio on)

demo.mp4

Thank you, @ngxson for the help!

@github-actions github-actions bot added model Model specific examples python python script changes server labels Jan 6, 2026
@tdakhran tdakhran force-pushed the tarek/feat/os-lfm2.5-audio-1.5b-upstream branch from c275436 to e1a8fd1 Compare January 6, 2026 14:46
@tdakhran
Copy link
Contributor Author

tdakhran commented Jan 6, 2026

@ngxson @CISC is there a way to disable CI for this PR? There is no need to build it for each commit.

@CISC
Copy link
Collaborator

CISC commented Jan 6, 2026

@ngxson @CISC is there a way to disable CI for this PR? There is no need to build it for each commit.

Only way I know is to have a merge conflict.

@ggerganov
Copy link
Member

If the string [no ci] is present anywhere in the commit message, it won't execute the CI

@CISC
Copy link
Collaborator

CISC commented Jan 6, 2026

If the string [no ci] is present anywhere in the commit message, it won't execute the CI

Or that. We just have to remember to remove them all from the merge message. :)

Change is decoupled from ggml-org#18641.

[LFM2.5-Audio-1.5B](https://huggingface.co/LiquidAI/LFM2.5-Audio-1.5B)
needs streaming istft for generating output audio.

* add streaming ISTFT class (`mtmd_audio_streaming_istft`) with overlap-add for audio reconstruction
* replace global audio cache with per-instance cache, the model requires
  two independent caches, for preprocessing (audio input) and for istft
  (audio output).
* unified templated FFT/IFFT implementation supporting both forward and inverse transforms
… tarek/feat/os-lfm2.5-audio-1.5b-upstream

[no ci]
ngxson pushed a commit that referenced this pull request Jan 6, 2026
Change is decoupled from #18641.

[LFM2.5-Audio-1.5B](https://huggingface.co/LiquidAI/LFM2.5-Audio-1.5B)
needs streaming istft for generating output audio.

* add streaming ISTFT class (`mtmd_audio_streaming_istft`) with overlap-add for audio reconstruction
* replace global audio cache with per-instance cache, the model requires
  two independent caches, for preprocessing (audio input) and for istft
  (audio output).
* unified templated FFT/IFFT implementation supporting both forward and inverse transforms
@elfarolab
Copy link

@tdakhran

Hello Tarek,

I am trying to build your WIP PR.
I know it is a draft, it should be considered work in progress.

With the last commit: 'Read n_layer from gguf', using LTO, building fails at the very end of building here:

FAILED: bin/llama-liquid-audio-cli
: && /usr/bin/c++ -O3 -DNDEBUG  tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o -o bin/llama-liquid-audio-cli  tools/liquid-audio/libliquid-audio.a  common/libcommon.a  /usr/lib/aarch64-linux-gnu/libcurl.so  tools/mtmd/libmtmd.a  src/libllama.a  ggml/src/libggml.a  ggml/src/libggml-cpu.a  /usr/lib/gcc/aarch64-linux-gnu/11/libgomp.a  /usr/lib/aarch64-linux-gnu/libpthread.a  ggml/src/ggml-blas/libggml-blas.a  /usr/lib/aarch64-linux-gnu/libopenblas.so.0  ggml/src/ggml-cuda/libggml-cuda.a  ggml/src/libggml-base.a  -lm  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libcudart_static.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libcublas_static.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libcublasLt_static.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libculibos.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/stubs/libcuda.so  -ldl  /usr/lib/aarch64-linux-gnu/librt.a && :
/usr/bin/ld: tools/mtmd/libmtmd.a(mtmd-helper.cpp.o):(.bss+0x28): multiple definition of `ma_atomic_global_lock'; tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o:(.bss+0x0): first defined here
lto-wrapper: warning: using serial compilation of 17 LTRANS jobs
collect2: error: ld returned 1 exit status
[474/474] : && /usr/bin/c++ -O3 -DNDEBUG  tools/liquid-audio/CMakeFiles/llama-liquid-audio-server.dir/server.cpp.o -o bin/llama-liquid-audio-server  tools/liquid-audio/libliquid-audio.a  vendor/cpp-httplib/libcpp-httplib.a  common/libcommon.a  /usr/lib/aarch64-linux-gnu/libcurl.so  tools/mtmd/libmtmd.a  src/libllama.a  ggml/src/libggml.a  ggml/src/libggml-cpu.a  /usr/lib/gcc/aarch64-linux-gnu/11/libgomp.a  /usr/lib/aarch64-linux-gnu/libpthread.a  ggml/src/ggml-blas/libggml-blas.a  /usr/lib/aarch64-linux-gnu/libopenblas.so.0  ggml/src/ggml-cuda/libggml-cuda.a  ggml/src/libggml-base.a  -lm  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libcudart_static.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libcublas_static.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libcublasLt_static.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/libculibos.a  /usr/local/cuda-12.6/targets/aarch64-linux/lib/stubs/libcuda.so  -ldl  /usr/lib/aarch64-linux-gnu/librt.a  /usr/lib/aarch64-linux-gnu/libssl.so  /usr/lib/aarch64-linux-gnu/libcrypto.so && :
lto-wrapper: warning: using serial compilation of 17 LTRANS jobs
ninja: build stopped: subcommand failed.

llama-server and llama-liquid-audio-server are succefully built, cli fails.

If there is anything I can do to help testing let me know.
I am building a system also with this model on Jetson Orin.

Thank you so much.

@tdakhran
Copy link
Contributor Author

tdakhran commented Jan 7, 2026

@elfarolab , mentioned commit didn't change anything related to compilation or LTO, could it be that there are stale object files somewhere?

Tested that the clean build in ubuntu:24.04 Docker image works

root@1641914992f4:/tmp/build# cmake /mnt -DLLAMA_CURL=OFF
root@1641914992f4:/tmp/build# make -j20 llama-liquid-audio-cli llama-liquid-audio-server
...
[ 98%] Built target liquid-audio
[100%] Built target llama-liquid-audio-cli
[100%] Built target llama-liquid-audio-server

UPD: it's related to miniaudio

cli defines implementation here https://github.com/ggml-org/llama.cpp/pull/18641/changes#diff-73f13371b37801825dc2cdbfacadf9af40aef9dca4770d9dacbbe3534c7a7dacR13 , another implementation is defined in mtmd audio.

try commenting this line

@elfarolab
Copy link

Before building I delete the building destination directory every time.
I am building with these options:

CMAKE_BUILD_TYPE=Release
CMAKE_INSTALL_PREFIX=$LLAMACPP_PREFIX_DIR
GGML_CUDA=ON
GGML_CUDA_FA=ON
GGML_CUDA_GRAPHS=ON
GGML_CUDA_FORCE_CUBLAS=ON
GGML_BLAS=ON
GGML_BLAS_VENDOR=OpenBLAS
BLAS_LIBRARIES="$OPENBLAS_LIB"
GGML_CUDA_USE_MMQ=ON
GGML_CUDA_FA_ALL_QUANTS=ON
GGML_AVX=OFF
GGML_AVX2=OFF
GGML_AVX512=OFF
GGML_SSE42=OFF
GGML_F16C=OFF
GGML_FMA=OFF
GGML_ACCELERATE=OFF
GGML_METAL=OFF
GGML_OPENCL=OFF
GGML_SYCL=OFF
GGML_HEXAGON=OFF
GGML_HIP=OFF
GGML_WEBGPU=OFF
GGML_VULKAN=OFF
GGML_LTO=ON
BUILD_SHARED_LIBS=OFF
GGML_STATIC=ON
CMAKE_CUDA_ARCHITECTURES=87
GGML_CUDA_F16=ON
GGML_CUDA_BF16=ON
BLA_STATIC=ON
LLAMA_BUILD_EXAMPLES=ON
LLAMA_BUILD_TESTS=OFF
LLAMA_OPENSSL=ON
LLAMA_CURL=ON
GGML_CUDA_JETSON_DEVICE=ON
GGML_CUDA_ENABLE_UNIFIED_MEMORY=ON
LLAMA_TOOLS_INSTALL=ON
GGML_BACKEND_DL=OFF
GGML_CPU_ALL_VARIANTS=OFF

I always build llama.cpp the same way with the options above, never get failures.
Also it is not the first time I build a PR.
I could try building without ninja.

@tdakhran
Copy link
Contributor Author

tdakhran commented Jan 7, 2026

@elfarolab , it should work now, there were two implementations of miniaudio

@elfarolab
Copy link

@elfarolab , it should work now, there were two implementations of miniaudio

rebuilding

@elfarolab
Copy link

elfarolab commented Jan 18, 2026

@tdakhran

Hello Tarek, I hope you are doing well.

I was testing the server a bit further today, with the updated models of 2 weeks ago.
The server is crashing always during the next ASR request after a sucessful sequence of ASR+TTS.

Running on nVidia AGX Orin dev kit.
Please notice also that strange CLIP warning while loading the model, searched for it but didn't understantd yet the reason.

./llama-liquid-audio-server \
    --port 8086 \
    --no-mmap \
    -m /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/LFM2.5-Audio-1.5B-F16.gguf \
    -mm /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/mmproj-LFM2.5-Audio-1.5B-F16.gguf \
    -mv /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/vocoder-LFM2.5-Audio-1.5B-F16.gguf \
    --tts-speaker-file /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-F16.gguf

Thank you so much.

Loading and crash log: ggml_cuda_init: found 1 CUDA devices: Device 0: Orin, compute capability 8.7, VMM: no build: 1 (4a2f68a) with GNU 11.4.0 for Linux aarch64 Loading model common_init_result: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on llama_params_fit_impl: projected to use 2416 MiB of device memory vs. 8291 MiB of free device memory llama_params_fit_impl: will leave 5874 >= 1024 MiB of free device memory, no changes needed llama_params_fit: successfully fit params to free device memory llama_params_fit: fitting params to free memory took 0.23 seconds llama_model_load_from_file_impl: using device CUDA0 (Orin) (0000:00:00.0) - 8293 MiB free llama_model_loader: loaded meta data with 38 key-value pairs and 148 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/LFM2.5-Audio-1.5B-F16.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = lfm2 llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = LFM2.5 Audio 1.5B llama_model_loader: - kv 3: general.basename str = LFM2.5-Audio llama_model_loader: - kv 4: general.size_label str = 1.5B llama_model_loader: - kv 5: general.license str = other llama_model_loader: - kv 6: general.license.name str = lfm1.0 llama_model_loader: - kv 7: general.license.link str = LICENSE llama_model_loader: - kv 8: general.base_model.count u32 = 1 llama_model_loader: - kv 9: general.base_model.0.name str = LFM2 1.2B llama_model_loader: - kv 10: general.base_model.0.organization str = LiquidAI llama_model_loader: - kv 11: general.base_model.0.repo_url str = https://huggingface.co/LiquidAI/LFM2-... llama_model_loader: - kv 12: general.tags arr[str,7] = ["liquid", "lfm2", "audio", "lfm2-aud... llama_model_loader: - kv 13: general.languages arr[str,1] = ["en"] llama_model_loader: - kv 14: lfm2.block_count u32 = 16 llama_model_loader: - kv 15: lfm2.context_length u32 = 128000 llama_model_loader: - kv 16: lfm2.embedding_length u32 = 2048 llama_model_loader: - kv 17: lfm2.feed_forward_length u32 = 8192 llama_model_loader: - kv 18: lfm2.attention.head_count u32 = 32 llama_model_loader: - kv 19: lfm2.attention.head_count_kv arr[i32,16] = [0, 0, 8, 0, 0, 8, 0, 0, 8, 0, 8, 0, ... llama_model_loader: - kv 20: lfm2.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 21: lfm2.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 22: general.file_type u32 = 1 llama_model_loader: - kv 23: lfm2.vocab_size u32 = 65536 llama_model_loader: - kv 24: lfm2.shortconv.l_cache u32 = 3 llama_model_loader: - kv 25: general.quantization_version u32 = 2 llama_model_loader: - kv 26: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 27: tokenizer.ggml.pre str = lfm2 llama_model_loader: - kv 28: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end... llama_model_loader: - kv 29: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 30: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �... llama_model_loader: - kv 31: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 32: tokenizer.ggml.eos_token_id u32 = 7 llama_model_loader: - kv 33: tokenizer.ggml.padding_token_id u32 = 0 llama_model_loader: - kv 34: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 35: tokenizer.ggml.add_sep_token bool = false llama_model_loader: - kv 36: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 37: tokenizer.chat_template str = {{- bos_token -}}{%- set system_promp... llama_model_loader: - type f32: 55 tensors llama_model_loader: - type f16: 93 tensors print_info: file format = GGUF V3 (latest) print_info: file type = F16 print_info: file size = 2.18 GiB (16.00 BPW) load: 0 unused tokens load: printing all EOG tokens: load: - 2 ('<|endoftext|>') load: - 7 ('<|im_end|>') load: special tokens cache size = 507 load: token to piece cache size = 0.3756 MB print_info: arch = lfm2 print_info: vocab_only = 0 print_info: no_alloc = 0 print_info: n_ctx_train = 128000 print_info: n_embd = 2048 print_info: n_embd_inp = 2048 print_info: n_layer = 16 print_info: n_head = 32 print_info: n_head_kv = [0, 0, 8, 0, 0, 8, 0, 0, 8, 0, 8, 0, 8, 0, 8, 0] print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = [0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 4, 0, 4, 0, 4, 0] print_info: n_embd_k_gqa = [0, 0, 512, 0, 0, 512, 0, 0, 512, 0, 512, 0, 512, 0, 512, 0] print_info: n_embd_v_gqa = [0, 0, 512, 0, 0, 512, 0, 0, 512, 0, 512, 0, 512, 0, 512, 0] print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 8192 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: n_expert_groups = 0 print_info: n_group_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 128000 print_info: rope_yarn_log_mul= 0.0000 print_info: rope_finetuned = unknown print_info: model type = 1.2B print_info: model params = 1.17 B print_info: general.name = LFM2.5 Audio 1.5B print_info: vocab type = BPE print_info: n_vocab = 65536 print_info: n_merges = 63683 print_info: BOS token = 1 '<|startoftext|>' print_info: EOS token = 7 '<|im_end|>' print_info: EOT token = 2 '<|endoftext|>' print_info: PAD token = 0 '<|pad|>' print_info: LF token = 708 'Ċ' print_info: EOG token = 2 '<|endoftext|>' print_info: EOG token = 7 '<|im_end|>' print_info: max token length = 30 load_tensors: loading model tensors, this can take a while... (mmap = false) load_tensors: offloading output layer to GPU load_tensors: offloading 15 repeating layers to GPU load_tensors: offloaded 17/17 layers to GPU load_tensors: CUDA0 model buffer size = 2232.50 MiB load_tensors: CUDA_Host model buffer size = 256.00 MiB .................................................................. common_init_result: added <|endoftext|> logit bias = -inf common_init_result: added <|im_end|> logit bias = -inf llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_seq = 4096 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = auto llama_context: kv_unified = false llama_context: freq_base = 1000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized llama_context: CUDA_Host output buffer size = 0.25 MiB llama_kv_cache: CUDA0 KV buffer size = 48.00 MiB llama_kv_cache: size = 48.00 MiB ( 4096 cells, 6 layers, 1/1 seqs), K (f16): 24.00 MiB, V (f16): 24.00 MiB llama_memory_recurrent: CUDA0 RS buffer size = 0.16 MiB llama_memory_recurrent: size = 0.16 MiB ( 1 cells, 16 layers, 1 seqs), R (f32): 0.16 MiB, S (f32): 0.00 MiB llama_context: Flash Attention was auto, set to enabled llama_context: CUDA0 compute buffer size = 136.00 MiB llama_context: CUDA_Host compute buffer size = 12.01 MiB llama_context: graph nodes = 549 llama_context: graph splits = 2 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) common_init_result: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on llama_params_fit_impl: projected to use 268 MiB of device memory vs. 8241 MiB of free device memory llama_params_fit_impl: will leave 7972 >= 1024 MiB of free device memory, no changes needed llama_params_fit: successfully fit params to free device memory llama_params_fit: fitting params to free memory took 0.17 seconds llama_model_load_from_file_impl: using device CUDA0 (Orin) (0000:00:00.0) - 8241 MiB free llama_model_loader: loaded meta data with 29 key-value pairs and 77 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-F16.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = lfm2 llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Audio_Detokenizer llama_model_loader: - kv 3: general.size_label str = 70M llama_model_loader: - kv 4: lfm2.block_count u32 = 8 llama_model_loader: - kv 5: lfm2.context_length u32 = 128000 llama_model_loader: - kv 6: lfm2.embedding_length u32 = 512 llama_model_loader: - kv 7: lfm2.feed_forward_length u32 = 2304 llama_model_loader: - kv 8: lfm2.attention.head_count u32 = 16 llama_model_loader: - kv 9: lfm2.attention.head_count_kv arr[i32,8] = [0, 0, 8, 0, 8, 0, 8, 0] llama_model_loader: - kv 10: lfm2.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 11: lfm2.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 12: general.file_type u32 = 1 llama_model_loader: - kv 13: lfm2.vocab_size u32 = 65536 llama_model_loader: - kv 14: lfm2.shortconv.l_cache u32 = 3 llama_model_loader: - kv 15: lfm2.attention.sliding_window u32 = 30 llama_model_loader: - kv 16: lfm2.embedding_length_out u32 = 1282 llama_model_loader: - kv 17: general.quantization_version u32 = 2 llama_model_loader: - kv 18: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 19: tokenizer.ggml.pre str = lfm2 llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end... llama_model_loader: - kv 21: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 22: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �... llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 7 llama_model_loader: - kv 25: tokenizer.ggml.padding_token_id u32 = 0 llama_model_loader: - kv 26: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 27: tokenizer.ggml.add_sep_token bool = false llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - type f32: 29 tensors llama_model_loader: - type f16: 48 tensors print_info: file format = GGUF V3 (latest) print_info: file type = F16 print_info: file size = 133.82 MiB (16.00 BPW) load: 0 unused tokens load: printing all EOG tokens: load: - 2 ('<|endoftext|>') load: - 7 ('<|im_end|>') load: special tokens cache size = 507 load: token to piece cache size = 0.3756 MB print_info: arch = lfm2 print_info: vocab_only = 0 print_info: no_alloc = 0 print_info: n_ctx_train = 128000 print_info: n_embd = 512 print_info: n_embd_inp = 512 print_info: n_layer = 8 print_info: n_head = 16 print_info: n_head_kv = [0, 0, 8, 0, 8, 0, 8, 0] print_info: n_rot = 32 print_info: n_swa = 30 print_info: is_swa_any = 1 print_info: n_embd_head_k = 32 print_info: n_embd_head_v = 32 print_info: n_gqa = [0, 0, 2, 0, 2, 0, 2, 0] print_info: n_embd_k_gqa = [0, 0, 256, 0, 256, 0, 256, 0] print_info: n_embd_v_gqa = [0, 0, 256, 0, 256, 0, 256, 0] print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 2304 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: n_expert_groups = 0 print_info: n_group_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1 print_info: freq_base_swa = 10000.0 print_info: freq_scale_swa = 1 print_info: n_ctx_orig_yarn = 128000 print_info: rope_yarn_log_mul= 0.0000 print_info: rope_finetuned = unknown print_info: model type = ?B print_info: model params = 70.14 M print_info: general.name = Audio_Detokenizer print_info: vocab type = BPE print_info: n_vocab = 65536 print_info: n_merges = 63683 print_info: BOS token = 1 '<|startoftext|>' print_info: EOS token = 7 '<|im_end|>' print_info: EOT token = 2 '<|endoftext|>' print_info: PAD token = 0 '<|pad|>' print_info: LF token = 708 'Ċ' print_info: EOG token = 2 '<|endoftext|>' print_info: EOG token = 7 '<|im_end|>' print_info: max token length = 30 load_tensors: loading model tensors, this can take a while... (mmap = false) load_tensors: offloading output layer to GPU load_tensors: offloading 7 repeating layers to GPU load_tensors: offloaded 9/9 layers to GPU load_tensors: CUDA0 model buffer size = 133.82 MiB load_tensors: CUDA_Host model buffer size = 64.00 MiB .................................. common_init_result: added <|endoftext|> logit bias = -inf common_init_result: added <|im_end|> logit bias = -inf llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_seq = 4096 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = auto llama_context: kv_unified = false llama_context: freq_base = 1000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized llama_context: CUDA_Host output buffer size = 0.25 MiB llama_kv_cache_iswa: creating non-SWA KV cache, size = 4096 cells llama_kv_cache: size = 0.00 MiB ( 4096 cells, 0 layers, 1/1 seqs), K (f16): 0.00 MiB, V (f16): 0.00 MiB llama_kv_cache_iswa: creating SWA KV cache, size = 768 cells llama_kv_cache: CUDA0 KV buffer size = 2.25 MiB llama_kv_cache: size = 2.25 MiB ( 768 cells, 3 layers, 1/1 seqs), K (f16): 1.12 MiB, V (f16): 1.12 MiB llama_memory_recurrent: CUDA0 RS buffer size = 0.02 MiB llama_memory_recurrent: size = 0.02 MiB ( 1 cells, 8 layers, 1 seqs), R (f32): 0.02 MiB, S (f32): 0.00 MiB llama_context: layer 2 is assigned to device CUDA0 but the Flash Attention tensor is assigned to device CPU (usually due to missing support) llama_context: Flash Attention was auto, set to disabled llama_context: CUDA0 compute buffer size = 132.50 MiB llama_context: CUDA_Host compute buffer size = 2.51 MiB llama_context: graph nodes = 295 llama_context: graph splits = 2 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) common_chat_params_init_lfm2: Using content relying on the template init: chat template example: <|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant

clip_model_loader: model name: LFM2.5 Audio 1.5B
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 650
clip_model_loader: n_kv: 26

clip_model_loader: has audio encoder
clip_model_loader: tensor[0]: n_dims = 1, name = mm.a.mlp.0.bias, tensor_size=2048, offset=0, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[1]: n_dims = 1, name = mm.a.mlp.0.weight, tensor_size=2048, offset=2048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[2]: n_dims = 1, name = mm.a.mlp.1.bias, tensor_size=8192, offset=4096, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[3]: n_dims = 2, name = mm.a.mlp.1.weight, tensor_size=2097152, offset=12288, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[4]: n_dims = 1, name = mm.a.mlp.3.bias, tensor_size=8192, offset=2109440, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[5]: n_dims = 2, name = mm.a.mlp.3.weight, tensor_size=8388608, offset=2117632, shape:[2048, 2048, 1, 1], type = f16
clip_model_loader: tensor[6]: n_dims = 2, name = a.position_embd.weight, tensor_size=134283264, offset=10506240, shape:[2048, 16392, 1, 1], type = f32
clip_model_loader: tensor[7]: n_dims = 1, name = a.position_embd_norm.weight, tensor_size=8192, offset=144789504, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[8]: n_dims = 2, name = a.embd_to_logits.weight, tensor_size=67141632, offset=144797696, shape:[2048, 16392, 1, 1], type = f16
clip_model_loader: tensor[9]: n_dims = 1, name = a.blk.0.conv_norm.weight, tensor_size=2048, offset=211939328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[10]: n_dims = 1, name = a.blk.0.conv_norm.bias, tensor_size=2048, offset=211941376, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[11]: n_dims = 1, name = a.blk.0.conv_dw.bias, tensor_size=2048, offset=211943424, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[12]: n_dims = 2, name = a.blk.0.conv_dw.weight, tensor_size=18432, offset=211945472, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[13]: n_dims = 1, name = a.blk.0.conv_pw1.bias, tensor_size=4096, offset=211963904, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[14]: n_dims = 2, name = a.blk.0.conv_pw1.weight, tensor_size=2097152, offset=211968000, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[15]: n_dims = 1, name = a.blk.0.conv_pw2.bias, tensor_size=2048, offset=214065152, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[16]: n_dims = 2, name = a.blk.0.conv_pw2.weight, tensor_size=1048576, offset=214067200, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[17]: n_dims = 1, name = a.blk.0.ffn_up.bias, tensor_size=8192, offset=215115776, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[18]: n_dims = 2, name = a.blk.0.ffn_up.weight, tensor_size=2097152, offset=215123968, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[19]: n_dims = 1, name = a.blk.0.ffn_down.bias, tensor_size=2048, offset=217221120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[20]: n_dims = 2, name = a.blk.0.ffn_down.weight, tensor_size=2097152, offset=217223168, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[21]: n_dims = 1, name = a.blk.0.ffn_up_1.bias, tensor_size=8192, offset=219320320, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[22]: n_dims = 2, name = a.blk.0.ffn_up_1.weight, tensor_size=2097152, offset=219328512, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[23]: n_dims = 1, name = a.blk.0.ffn_down_1.bias, tensor_size=2048, offset=221425664, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[24]: n_dims = 2, name = a.blk.0.ffn_down_1.weight, tensor_size=2097152, offset=221427712, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[25]: n_dims = 1, name = a.blk.0.norm_conv.bias, tensor_size=2048, offset=223524864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[26]: n_dims = 1, name = a.blk.0.norm_conv.weight, tensor_size=2048, offset=223526912, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[27]: n_dims = 1, name = a.blk.0.ffn_norm.bias, tensor_size=2048, offset=223528960, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[28]: n_dims = 1, name = a.blk.0.ffn_norm.weight, tensor_size=2048, offset=223531008, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[29]: n_dims = 1, name = a.blk.0.ffn_norm_1.bias, tensor_size=2048, offset=223533056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[30]: n_dims = 1, name = a.blk.0.ffn_norm_1.weight, tensor_size=2048, offset=223535104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[31]: n_dims = 1, name = a.blk.0.ln2.bias, tensor_size=2048, offset=223537152, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[32]: n_dims = 1, name = a.blk.0.ln2.weight, tensor_size=2048, offset=223539200, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[33]: n_dims = 1, name = a.blk.0.ln1.bias, tensor_size=2048, offset=223541248, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[34]: n_dims = 1, name = a.blk.0.ln1.weight, tensor_size=2048, offset=223543296, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[35]: n_dims = 1, name = a.blk.0.attn_k.bias, tensor_size=2048, offset=223545344, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[36]: n_dims = 2, name = a.blk.0.attn_k.weight, tensor_size=524288, offset=223547392, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[37]: n_dims = 1, name = a.blk.0.attn_out.bias, tensor_size=2048, offset=224071680, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[38]: n_dims = 2, name = a.blk.0.attn_out.weight, tensor_size=524288, offset=224073728, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[39]: n_dims = 2, name = a.blk.0.linear_pos.weight, tensor_size=524288, offset=224598016, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[40]: n_dims = 1, name = a.blk.0.attn_q.bias, tensor_size=2048, offset=225122304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[41]: n_dims = 2, name = a.blk.0.attn_q.weight, tensor_size=524288, offset=225124352, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[42]: n_dims = 1, name = a.blk.0.attn_v.bias, tensor_size=2048, offset=225648640, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[43]: n_dims = 2, name = a.blk.0.attn_v.weight, tensor_size=524288, offset=225650688, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[44]: n_dims = 2, name = a.blk.0.pos_bias_u, tensor_size=2048, offset=226174976, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[45]: n_dims = 2, name = a.blk.0.pos_bias_v, tensor_size=2048, offset=226177024, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[46]: n_dims = 1, name = a.blk.1.conv_norm.weight, tensor_size=2048, offset=226179072, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[47]: n_dims = 1, name = a.blk.1.conv_norm.bias, tensor_size=2048, offset=226181120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[48]: n_dims = 1, name = a.blk.1.conv_dw.bias, tensor_size=2048, offset=226183168, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[49]: n_dims = 2, name = a.blk.1.conv_dw.weight, tensor_size=18432, offset=226185216, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[50]: n_dims = 1, name = a.blk.1.conv_pw1.bias, tensor_size=4096, offset=226203648, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[51]: n_dims = 2, name = a.blk.1.conv_pw1.weight, tensor_size=2097152, offset=226207744, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[52]: n_dims = 1, name = a.blk.1.conv_pw2.bias, tensor_size=2048, offset=228304896, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[53]: n_dims = 2, name = a.blk.1.conv_pw2.weight, tensor_size=1048576, offset=228306944, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[54]: n_dims = 1, name = a.blk.1.ffn_up.bias, tensor_size=8192, offset=229355520, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[55]: n_dims = 2, name = a.blk.1.ffn_up.weight, tensor_size=2097152, offset=229363712, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[56]: n_dims = 1, name = a.blk.1.ffn_down.bias, tensor_size=2048, offset=231460864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[57]: n_dims = 2, name = a.blk.1.ffn_down.weight, tensor_size=2097152, offset=231462912, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[58]: n_dims = 1, name = a.blk.1.ffn_up_1.bias, tensor_size=8192, offset=233560064, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[59]: n_dims = 2, name = a.blk.1.ffn_up_1.weight, tensor_size=2097152, offset=233568256, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[60]: n_dims = 1, name = a.blk.1.ffn_down_1.bias, tensor_size=2048, offset=235665408, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[61]: n_dims = 2, name = a.blk.1.ffn_down_1.weight, tensor_size=2097152, offset=235667456, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[62]: n_dims = 1, name = a.blk.1.norm_conv.bias, tensor_size=2048, offset=237764608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[63]: n_dims = 1, name = a.blk.1.norm_conv.weight, tensor_size=2048, offset=237766656, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[64]: n_dims = 1, name = a.blk.1.ffn_norm.bias, tensor_size=2048, offset=237768704, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[65]: n_dims = 1, name = a.blk.1.ffn_norm.weight, tensor_size=2048, offset=237770752, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[66]: n_dims = 1, name = a.blk.1.ffn_norm_1.bias, tensor_size=2048, offset=237772800, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[67]: n_dims = 1, name = a.blk.1.ffn_norm_1.weight, tensor_size=2048, offset=237774848, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[68]: n_dims = 1, name = a.blk.1.ln2.bias, tensor_size=2048, offset=237776896, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[69]: n_dims = 1, name = a.blk.1.ln2.weight, tensor_size=2048, offset=237778944, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[70]: n_dims = 1, name = a.blk.1.ln1.bias, tensor_size=2048, offset=237780992, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[71]: n_dims = 1, name = a.blk.1.ln1.weight, tensor_size=2048, offset=237783040, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[72]: n_dims = 1, name = a.blk.1.attn_k.bias, tensor_size=2048, offset=237785088, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[73]: n_dims = 2, name = a.blk.1.attn_k.weight, tensor_size=524288, offset=237787136, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[74]: n_dims = 1, name = a.blk.1.attn_out.bias, tensor_size=2048, offset=238311424, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[75]: n_dims = 2, name = a.blk.1.attn_out.weight, tensor_size=524288, offset=238313472, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[76]: n_dims = 2, name = a.blk.1.linear_pos.weight, tensor_size=524288, offset=238837760, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[77]: n_dims = 1, name = a.blk.1.attn_q.bias, tensor_size=2048, offset=239362048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[78]: n_dims = 2, name = a.blk.1.attn_q.weight, tensor_size=524288, offset=239364096, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[79]: n_dims = 1, name = a.blk.1.attn_v.bias, tensor_size=2048, offset=239888384, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[80]: n_dims = 2, name = a.blk.1.attn_v.weight, tensor_size=524288, offset=239890432, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[81]: n_dims = 2, name = a.blk.1.pos_bias_u, tensor_size=2048, offset=240414720, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[82]: n_dims = 2, name = a.blk.1.pos_bias_v, tensor_size=2048, offset=240416768, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[83]: n_dims = 1, name = a.blk.10.conv_norm.weight, tensor_size=2048, offset=240418816, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[84]: n_dims = 1, name = a.blk.10.conv_norm.bias, tensor_size=2048, offset=240420864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[85]: n_dims = 1, name = a.blk.10.conv_dw.bias, tensor_size=2048, offset=240422912, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[86]: n_dims = 2, name = a.blk.10.conv_dw.weight, tensor_size=18432, offset=240424960, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[87]: n_dims = 1, name = a.blk.10.conv_pw1.bias, tensor_size=4096, offset=240443392, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[88]: n_dims = 2, name = a.blk.10.conv_pw1.weight, tensor_size=2097152, offset=240447488, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[89]: n_dims = 1, name = a.blk.10.conv_pw2.bias, tensor_size=2048, offset=242544640, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[90]: n_dims = 2, name = a.blk.10.conv_pw2.weight, tensor_size=1048576, offset=242546688, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[91]: n_dims = 1, name = a.blk.10.ffn_up.bias, tensor_size=8192, offset=243595264, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[92]: n_dims = 2, name = a.blk.10.ffn_up.weight, tensor_size=2097152, offset=243603456, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[93]: n_dims = 1, name = a.blk.10.ffn_down.bias, tensor_size=2048, offset=245700608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[94]: n_dims = 2, name = a.blk.10.ffn_down.weight, tensor_size=2097152, offset=245702656, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[95]: n_dims = 1, name = a.blk.10.ffn_up_1.bias, tensor_size=8192, offset=247799808, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[96]: n_dims = 2, name = a.blk.10.ffn_up_1.weight, tensor_size=2097152, offset=247808000, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[97]: n_dims = 1, name = a.blk.10.ffn_down_1.bias, tensor_size=2048, offset=249905152, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[98]: n_dims = 2, name = a.blk.10.ffn_down_1.weight, tensor_size=2097152, offset=249907200, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[99]: n_dims = 1, name = a.blk.10.norm_conv.bias, tensor_size=2048, offset=252004352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[100]: n_dims = 1, name = a.blk.10.norm_conv.weight, tensor_size=2048, offset=252006400, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[101]: n_dims = 1, name = a.blk.10.ffn_norm.bias, tensor_size=2048, offset=252008448, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[102]: n_dims = 1, name = a.blk.10.ffn_norm.weight, tensor_size=2048, offset=252010496, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[103]: n_dims = 1, name = a.blk.10.ffn_norm_1.bias, tensor_size=2048, offset=252012544, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[104]: n_dims = 1, name = a.blk.10.ffn_norm_1.weight, tensor_size=2048, offset=252014592, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[105]: n_dims = 1, name = a.blk.10.ln2.bias, tensor_size=2048, offset=252016640, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[106]: n_dims = 1, name = a.blk.10.ln2.weight, tensor_size=2048, offset=252018688, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[107]: n_dims = 1, name = a.blk.10.ln1.bias, tensor_size=2048, offset=252020736, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[108]: n_dims = 1, name = a.blk.10.ln1.weight, tensor_size=2048, offset=252022784, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[109]: n_dims = 1, name = a.blk.10.attn_k.bias, tensor_size=2048, offset=252024832, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[110]: n_dims = 2, name = a.blk.10.attn_k.weight, tensor_size=524288, offset=252026880, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[111]: n_dims = 1, name = a.blk.10.attn_out.bias, tensor_size=2048, offset=252551168, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[112]: n_dims = 2, name = a.blk.10.attn_out.weight, tensor_size=524288, offset=252553216, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[113]: n_dims = 2, name = a.blk.10.linear_pos.weight, tensor_size=524288, offset=253077504, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[114]: n_dims = 1, name = a.blk.10.attn_q.bias, tensor_size=2048, offset=253601792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[115]: n_dims = 2, name = a.blk.10.attn_q.weight, tensor_size=524288, offset=253603840, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[116]: n_dims = 1, name = a.blk.10.attn_v.bias, tensor_size=2048, offset=254128128, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[117]: n_dims = 2, name = a.blk.10.attn_v.weight, tensor_size=524288, offset=254130176, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[118]: n_dims = 2, name = a.blk.10.pos_bias_u, tensor_size=2048, offset=254654464, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[119]: n_dims = 2, name = a.blk.10.pos_bias_v, tensor_size=2048, offset=254656512, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[120]: n_dims = 1, name = a.blk.11.conv_norm.weight, tensor_size=2048, offset=254658560, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[121]: n_dims = 1, name = a.blk.11.conv_norm.bias, tensor_size=2048, offset=254660608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[122]: n_dims = 1, name = a.blk.11.conv_dw.bias, tensor_size=2048, offset=254662656, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[123]: n_dims = 2, name = a.blk.11.conv_dw.weight, tensor_size=18432, offset=254664704, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[124]: n_dims = 1, name = a.blk.11.conv_pw1.bias, tensor_size=4096, offset=254683136, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[125]: n_dims = 2, name = a.blk.11.conv_pw1.weight, tensor_size=2097152, offset=254687232, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[126]: n_dims = 1, name = a.blk.11.conv_pw2.bias, tensor_size=2048, offset=256784384, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[127]: n_dims = 2, name = a.blk.11.conv_pw2.weight, tensor_size=1048576, offset=256786432, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[128]: n_dims = 1, name = a.blk.11.ffn_up.bias, tensor_size=8192, offset=257835008, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[129]: n_dims = 2, name = a.blk.11.ffn_up.weight, tensor_size=2097152, offset=257843200, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[130]: n_dims = 1, name = a.blk.11.ffn_down.bias, tensor_size=2048, offset=259940352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[131]: n_dims = 2, name = a.blk.11.ffn_down.weight, tensor_size=2097152, offset=259942400, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[132]: n_dims = 1, name = a.blk.11.ffn_up_1.bias, tensor_size=8192, offset=262039552, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[133]: n_dims = 2, name = a.blk.11.ffn_up_1.weight, tensor_size=2097152, offset=262047744, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[134]: n_dims = 1, name = a.blk.11.ffn_down_1.bias, tensor_size=2048, offset=264144896, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[135]: n_dims = 2, name = a.blk.11.ffn_down_1.weight, tensor_size=2097152, offset=264146944, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[136]: n_dims = 1, name = a.blk.11.norm_conv.bias, tensor_size=2048, offset=266244096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[137]: n_dims = 1, name = a.blk.11.norm_conv.weight, tensor_size=2048, offset=266246144, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[138]: n_dims = 1, name = a.blk.11.ffn_norm.bias, tensor_size=2048, offset=266248192, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[139]: n_dims = 1, name = a.blk.11.ffn_norm.weight, tensor_size=2048, offset=266250240, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[140]: n_dims = 1, name = a.blk.11.ffn_norm_1.bias, tensor_size=2048, offset=266252288, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[141]: n_dims = 1, name = a.blk.11.ffn_norm_1.weight, tensor_size=2048, offset=266254336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[142]: n_dims = 1, name = a.blk.11.ln2.bias, tensor_size=2048, offset=266256384, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[143]: n_dims = 1, name = a.blk.11.ln2.weight, tensor_size=2048, offset=266258432, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[144]: n_dims = 1, name = a.blk.11.ln1.bias, tensor_size=2048, offset=266260480, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[145]: n_dims = 1, name = a.blk.11.ln1.weight, tensor_size=2048, offset=266262528, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[146]: n_dims = 1, name = a.blk.11.attn_k.bias, tensor_size=2048, offset=266264576, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[147]: n_dims = 2, name = a.blk.11.attn_k.weight, tensor_size=524288, offset=266266624, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[148]: n_dims = 1, name = a.blk.11.attn_out.bias, tensor_size=2048, offset=266790912, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[149]: n_dims = 2, name = a.blk.11.attn_out.weight, tensor_size=524288, offset=266792960, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[150]: n_dims = 2, name = a.blk.11.linear_pos.weight, tensor_size=524288, offset=267317248, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[151]: n_dims = 1, name = a.blk.11.attn_q.bias, tensor_size=2048, offset=267841536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[152]: n_dims = 2, name = a.blk.11.attn_q.weight, tensor_size=524288, offset=267843584, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[153]: n_dims = 1, name = a.blk.11.attn_v.bias, tensor_size=2048, offset=268367872, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[154]: n_dims = 2, name = a.blk.11.attn_v.weight, tensor_size=524288, offset=268369920, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[155]: n_dims = 2, name = a.blk.11.pos_bias_u, tensor_size=2048, offset=268894208, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[156]: n_dims = 2, name = a.blk.11.pos_bias_v, tensor_size=2048, offset=268896256, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[157]: n_dims = 1, name = a.blk.12.conv_norm.weight, tensor_size=2048, offset=268898304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[158]: n_dims = 1, name = a.blk.12.conv_norm.bias, tensor_size=2048, offset=268900352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[159]: n_dims = 1, name = a.blk.12.conv_dw.bias, tensor_size=2048, offset=268902400, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[160]: n_dims = 2, name = a.blk.12.conv_dw.weight, tensor_size=18432, offset=268904448, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[161]: n_dims = 1, name = a.blk.12.conv_pw1.bias, tensor_size=4096, offset=268922880, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[162]: n_dims = 2, name = a.blk.12.conv_pw1.weight, tensor_size=2097152, offset=268926976, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[163]: n_dims = 1, name = a.blk.12.conv_pw2.bias, tensor_size=2048, offset=271024128, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[164]: n_dims = 2, name = a.blk.12.conv_pw2.weight, tensor_size=1048576, offset=271026176, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[165]: n_dims = 1, name = a.blk.12.ffn_up.bias, tensor_size=8192, offset=272074752, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[166]: n_dims = 2, name = a.blk.12.ffn_up.weight, tensor_size=2097152, offset=272082944, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[167]: n_dims = 1, name = a.blk.12.ffn_down.bias, tensor_size=2048, offset=274180096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[168]: n_dims = 2, name = a.blk.12.ffn_down.weight, tensor_size=2097152, offset=274182144, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[169]: n_dims = 1, name = a.blk.12.ffn_up_1.bias, tensor_size=8192, offset=276279296, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[170]: n_dims = 2, name = a.blk.12.ffn_up_1.weight, tensor_size=2097152, offset=276287488, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[171]: n_dims = 1, name = a.blk.12.ffn_down_1.bias, tensor_size=2048, offset=278384640, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[172]: n_dims = 2, name = a.blk.12.ffn_down_1.weight, tensor_size=2097152, offset=278386688, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[173]: n_dims = 1, name = a.blk.12.norm_conv.bias, tensor_size=2048, offset=280483840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[174]: n_dims = 1, name = a.blk.12.norm_conv.weight, tensor_size=2048, offset=280485888, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[175]: n_dims = 1, name = a.blk.12.ffn_norm.bias, tensor_size=2048, offset=280487936, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[176]: n_dims = 1, name = a.blk.12.ffn_norm.weight, tensor_size=2048, offset=280489984, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[177]: n_dims = 1, name = a.blk.12.ffn_norm_1.bias, tensor_size=2048, offset=280492032, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[178]: n_dims = 1, name = a.blk.12.ffn_norm_1.weight, tensor_size=2048, offset=280494080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[179]: n_dims = 1, name = a.blk.12.ln2.bias, tensor_size=2048, offset=280496128, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[180]: n_dims = 1, name = a.blk.12.ln2.weight, tensor_size=2048, offset=280498176, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[181]: n_dims = 1, name = a.blk.12.ln1.bias, tensor_size=2048, offset=280500224, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[182]: n_dims = 1, name = a.blk.12.ln1.weight, tensor_size=2048, offset=280502272, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[183]: n_dims = 1, name = a.blk.12.attn_k.bias, tensor_size=2048, offset=280504320, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[184]: n_dims = 2, name = a.blk.12.attn_k.weight, tensor_size=524288, offset=280506368, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[185]: n_dims = 1, name = a.blk.12.attn_out.bias, tensor_size=2048, offset=281030656, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[186]: n_dims = 2, name = a.blk.12.attn_out.weight, tensor_size=524288, offset=281032704, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[187]: n_dims = 2, name = a.blk.12.linear_pos.weight, tensor_size=524288, offset=281556992, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[188]: n_dims = 1, name = a.blk.12.attn_q.bias, tensor_size=2048, offset=282081280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[189]: n_dims = 2, name = a.blk.12.attn_q.weight, tensor_size=524288, offset=282083328, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[190]: n_dims = 1, name = a.blk.12.attn_v.bias, tensor_size=2048, offset=282607616, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[191]: n_dims = 2, name = a.blk.12.attn_v.weight, tensor_size=524288, offset=282609664, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[192]: n_dims = 2, name = a.blk.12.pos_bias_u, tensor_size=2048, offset=283133952, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[193]: n_dims = 2, name = a.blk.12.pos_bias_v, tensor_size=2048, offset=283136000, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[194]: n_dims = 1, name = a.blk.13.conv_norm.weight, tensor_size=2048, offset=283138048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[195]: n_dims = 1, name = a.blk.13.conv_norm.bias, tensor_size=2048, offset=283140096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[196]: n_dims = 1, name = a.blk.13.conv_dw.bias, tensor_size=2048, offset=283142144, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[197]: n_dims = 2, name = a.blk.13.conv_dw.weight, tensor_size=18432, offset=283144192, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[198]: n_dims = 1, name = a.blk.13.conv_pw1.bias, tensor_size=4096, offset=283162624, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[199]: n_dims = 2, name = a.blk.13.conv_pw1.weight, tensor_size=2097152, offset=283166720, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[200]: n_dims = 1, name = a.blk.13.conv_pw2.bias, tensor_size=2048, offset=285263872, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[201]: n_dims = 2, name = a.blk.13.conv_pw2.weight, tensor_size=1048576, offset=285265920, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[202]: n_dims = 1, name = a.blk.13.ffn_up.bias, tensor_size=8192, offset=286314496, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[203]: n_dims = 2, name = a.blk.13.ffn_up.weight, tensor_size=2097152, offset=286322688, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[204]: n_dims = 1, name = a.blk.13.ffn_down.bias, tensor_size=2048, offset=288419840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[205]: n_dims = 2, name = a.blk.13.ffn_down.weight, tensor_size=2097152, offset=288421888, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[206]: n_dims = 1, name = a.blk.13.ffn_up_1.bias, tensor_size=8192, offset=290519040, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[207]: n_dims = 2, name = a.blk.13.ffn_up_1.weight, tensor_size=2097152, offset=290527232, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[208]: n_dims = 1, name = a.blk.13.ffn_down_1.bias, tensor_size=2048, offset=292624384, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[209]: n_dims = 2, name = a.blk.13.ffn_down_1.weight, tensor_size=2097152, offset=292626432, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[210]: n_dims = 1, name = a.blk.13.norm_conv.bias, tensor_size=2048, offset=294723584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[211]: n_dims = 1, name = a.blk.13.norm_conv.weight, tensor_size=2048, offset=294725632, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[212]: n_dims = 1, name = a.blk.13.ffn_norm.bias, tensor_size=2048, offset=294727680, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[213]: n_dims = 1, name = a.blk.13.ffn_norm.weight, tensor_size=2048, offset=294729728, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[214]: n_dims = 1, name = a.blk.13.ffn_norm_1.bias, tensor_size=2048, offset=294731776, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[215]: n_dims = 1, name = a.blk.13.ffn_norm_1.weight, tensor_size=2048, offset=294733824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[216]: n_dims = 1, name = a.blk.13.ln2.bias, tensor_size=2048, offset=294735872, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[217]: n_dims = 1, name = a.blk.13.ln2.weight, tensor_size=2048, offset=294737920, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[218]: n_dims = 1, name = a.blk.13.ln1.bias, tensor_size=2048, offset=294739968, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[219]: n_dims = 1, name = a.blk.13.ln1.weight, tensor_size=2048, offset=294742016, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[220]: n_dims = 1, name = a.blk.13.attn_k.bias, tensor_size=2048, offset=294744064, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[221]: n_dims = 2, name = a.blk.13.attn_k.weight, tensor_size=524288, offset=294746112, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[222]: n_dims = 1, name = a.blk.13.attn_out.bias, tensor_size=2048, offset=295270400, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[223]: n_dims = 2, name = a.blk.13.attn_out.weight, tensor_size=524288, offset=295272448, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[224]: n_dims = 2, name = a.blk.13.linear_pos.weight, tensor_size=524288, offset=295796736, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[225]: n_dims = 1, name = a.blk.13.attn_q.bias, tensor_size=2048, offset=296321024, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[226]: n_dims = 2, name = a.blk.13.attn_q.weight, tensor_size=524288, offset=296323072, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[227]: n_dims = 1, name = a.blk.13.attn_v.bias, tensor_size=2048, offset=296847360, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[228]: n_dims = 2, name = a.blk.13.attn_v.weight, tensor_size=524288, offset=296849408, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[229]: n_dims = 2, name = a.blk.13.pos_bias_u, tensor_size=2048, offset=297373696, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[230]: n_dims = 2, name = a.blk.13.pos_bias_v, tensor_size=2048, offset=297375744, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[231]: n_dims = 1, name = a.blk.14.conv_norm.weight, tensor_size=2048, offset=297377792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[232]: n_dims = 1, name = a.blk.14.conv_norm.bias, tensor_size=2048, offset=297379840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[233]: n_dims = 1, name = a.blk.14.conv_dw.bias, tensor_size=2048, offset=297381888, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[234]: n_dims = 2, name = a.blk.14.conv_dw.weight, tensor_size=18432, offset=297383936, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[235]: n_dims = 1, name = a.blk.14.conv_pw1.bias, tensor_size=4096, offset=297402368, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[236]: n_dims = 2, name = a.blk.14.conv_pw1.weight, tensor_size=2097152, offset=297406464, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[237]: n_dims = 1, name = a.blk.14.conv_pw2.bias, tensor_size=2048, offset=299503616, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[238]: n_dims = 2, name = a.blk.14.conv_pw2.weight, tensor_size=1048576, offset=299505664, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[239]: n_dims = 1, name = a.blk.14.ffn_up.bias, tensor_size=8192, offset=300554240, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[240]: n_dims = 2, name = a.blk.14.ffn_up.weight, tensor_size=2097152, offset=300562432, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[241]: n_dims = 1, name = a.blk.14.ffn_down.bias, tensor_size=2048, offset=302659584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[242]: n_dims = 2, name = a.blk.14.ffn_down.weight, tensor_size=2097152, offset=302661632, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[243]: n_dims = 1, name = a.blk.14.ffn_up_1.bias, tensor_size=8192, offset=304758784, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[244]: n_dims = 2, name = a.blk.14.ffn_up_1.weight, tensor_size=2097152, offset=304766976, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[245]: n_dims = 1, name = a.blk.14.ffn_down_1.bias, tensor_size=2048, offset=306864128, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[246]: n_dims = 2, name = a.blk.14.ffn_down_1.weight, tensor_size=2097152, offset=306866176, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[247]: n_dims = 1, name = a.blk.14.norm_conv.bias, tensor_size=2048, offset=308963328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[248]: n_dims = 1, name = a.blk.14.norm_conv.weight, tensor_size=2048, offset=308965376, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[249]: n_dims = 1, name = a.blk.14.ffn_norm.bias, tensor_size=2048, offset=308967424, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[250]: n_dims = 1, name = a.blk.14.ffn_norm.weight, tensor_size=2048, offset=308969472, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[251]: n_dims = 1, name = a.blk.14.ffn_norm_1.bias, tensor_size=2048, offset=308971520, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[252]: n_dims = 1, name = a.blk.14.ffn_norm_1.weight, tensor_size=2048, offset=308973568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[253]: n_dims = 1, name = a.blk.14.ln2.bias, tensor_size=2048, offset=308975616, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[254]: n_dims = 1, name = a.blk.14.ln2.weight, tensor_size=2048, offset=308977664, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[255]: n_dims = 1, name = a.blk.14.ln1.bias, tensor_size=2048, offset=308979712, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[256]: n_dims = 1, name = a.blk.14.ln1.weight, tensor_size=2048, offset=308981760, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[257]: n_dims = 1, name = a.blk.14.attn_k.bias, tensor_size=2048, offset=308983808, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[258]: n_dims = 2, name = a.blk.14.attn_k.weight, tensor_size=524288, offset=308985856, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[259]: n_dims = 1, name = a.blk.14.attn_out.bias, tensor_size=2048, offset=309510144, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[260]: n_dims = 2, name = a.blk.14.attn_out.weight, tensor_size=524288, offset=309512192, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[261]: n_dims = 2, name = a.blk.14.linear_pos.weight, tensor_size=524288, offset=310036480, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[262]: n_dims = 1, name = a.blk.14.attn_q.bias, tensor_size=2048, offset=310560768, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[263]: n_dims = 2, name = a.blk.14.attn_q.weight, tensor_size=524288, offset=310562816, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[264]: n_dims = 1, name = a.blk.14.attn_v.bias, tensor_size=2048, offset=311087104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[265]: n_dims = 2, name = a.blk.14.attn_v.weight, tensor_size=524288, offset=311089152, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[266]: n_dims = 2, name = a.blk.14.pos_bias_u, tensor_size=2048, offset=311613440, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[267]: n_dims = 2, name = a.blk.14.pos_bias_v, tensor_size=2048, offset=311615488, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[268]: n_dims = 1, name = a.blk.15.conv_norm.weight, tensor_size=2048, offset=311617536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[269]: n_dims = 1, name = a.blk.15.conv_norm.bias, tensor_size=2048, offset=311619584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[270]: n_dims = 1, name = a.blk.15.conv_dw.bias, tensor_size=2048, offset=311621632, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[271]: n_dims = 2, name = a.blk.15.conv_dw.weight, tensor_size=18432, offset=311623680, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[272]: n_dims = 1, name = a.blk.15.conv_pw1.bias, tensor_size=4096, offset=311642112, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[273]: n_dims = 2, name = a.blk.15.conv_pw1.weight, tensor_size=2097152, offset=311646208, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[274]: n_dims = 1, name = a.blk.15.conv_pw2.bias, tensor_size=2048, offset=313743360, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[275]: n_dims = 2, name = a.blk.15.conv_pw2.weight, tensor_size=1048576, offset=313745408, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[276]: n_dims = 1, name = a.blk.15.ffn_up.bias, tensor_size=8192, offset=314793984, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[277]: n_dims = 2, name = a.blk.15.ffn_up.weight, tensor_size=2097152, offset=314802176, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[278]: n_dims = 1, name = a.blk.15.ffn_down.bias, tensor_size=2048, offset=316899328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[279]: n_dims = 2, name = a.blk.15.ffn_down.weight, tensor_size=2097152, offset=316901376, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[280]: n_dims = 1, name = a.blk.15.ffn_up_1.bias, tensor_size=8192, offset=318998528, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[281]: n_dims = 2, name = a.blk.15.ffn_up_1.weight, tensor_size=2097152, offset=319006720, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[282]: n_dims = 1, name = a.blk.15.ffn_down_1.bias, tensor_size=2048, offset=321103872, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[283]: n_dims = 2, name = a.blk.15.ffn_down_1.weight, tensor_size=2097152, offset=321105920, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[284]: n_dims = 1, name = a.blk.15.norm_conv.bias, tensor_size=2048, offset=323203072, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[285]: n_dims = 1, name = a.blk.15.norm_conv.weight, tensor_size=2048, offset=323205120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[286]: n_dims = 1, name = a.blk.15.ffn_norm.bias, tensor_size=2048, offset=323207168, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[287]: n_dims = 1, name = a.blk.15.ffn_norm.weight, tensor_size=2048, offset=323209216, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[288]: n_dims = 1, name = a.blk.15.ffn_norm_1.bias, tensor_size=2048, offset=323211264, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[289]: n_dims = 1, name = a.blk.15.ffn_norm_1.weight, tensor_size=2048, offset=323213312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[290]: n_dims = 1, name = a.blk.15.ln2.bias, tensor_size=2048, offset=323215360, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[291]: n_dims = 1, name = a.blk.15.ln2.weight, tensor_size=2048, offset=323217408, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[292]: n_dims = 1, name = a.blk.15.ln1.bias, tensor_size=2048, offset=323219456, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[293]: n_dims = 1, name = a.blk.15.ln1.weight, tensor_size=2048, offset=323221504, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[294]: n_dims = 1, name = a.blk.15.attn_k.bias, tensor_size=2048, offset=323223552, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[295]: n_dims = 2, name = a.blk.15.attn_k.weight, tensor_size=524288, offset=323225600, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[296]: n_dims = 1, name = a.blk.15.attn_out.bias, tensor_size=2048, offset=323749888, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[297]: n_dims = 2, name = a.blk.15.attn_out.weight, tensor_size=524288, offset=323751936, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[298]: n_dims = 2, name = a.blk.15.linear_pos.weight, tensor_size=524288, offset=324276224, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[299]: n_dims = 1, name = a.blk.15.attn_q.bias, tensor_size=2048, offset=324800512, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[300]: n_dims = 2, name = a.blk.15.attn_q.weight, tensor_size=524288, offset=324802560, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[301]: n_dims = 1, name = a.blk.15.attn_v.bias, tensor_size=2048, offset=325326848, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[302]: n_dims = 2, name = a.blk.15.attn_v.weight, tensor_size=524288, offset=325328896, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[303]: n_dims = 2, name = a.blk.15.pos_bias_u, tensor_size=2048, offset=325853184, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[304]: n_dims = 2, name = a.blk.15.pos_bias_v, tensor_size=2048, offset=325855232, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[305]: n_dims = 1, name = a.blk.16.conv_norm.weight, tensor_size=2048, offset=325857280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[306]: n_dims = 1, name = a.blk.16.conv_norm.bias, tensor_size=2048, offset=325859328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[307]: n_dims = 1, name = a.blk.16.conv_dw.bias, tensor_size=2048, offset=325861376, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[308]: n_dims = 2, name = a.blk.16.conv_dw.weight, tensor_size=18432, offset=325863424, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[309]: n_dims = 1, name = a.blk.16.conv_pw1.bias, tensor_size=4096, offset=325881856, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[310]: n_dims = 2, name = a.blk.16.conv_pw1.weight, tensor_size=2097152, offset=325885952, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[311]: n_dims = 1, name = a.blk.16.conv_pw2.bias, tensor_size=2048, offset=327983104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[312]: n_dims = 2, name = a.blk.16.conv_pw2.weight, tensor_size=1048576, offset=327985152, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[313]: n_dims = 1, name = a.blk.16.ffn_up.bias, tensor_size=8192, offset=329033728, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[314]: n_dims = 2, name = a.blk.16.ffn_up.weight, tensor_size=2097152, offset=329041920, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[315]: n_dims = 1, name = a.blk.16.ffn_down.bias, tensor_size=2048, offset=331139072, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[316]: n_dims = 2, name = a.blk.16.ffn_down.weight, tensor_size=2097152, offset=331141120, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[317]: n_dims = 1, name = a.blk.16.ffn_up_1.bias, tensor_size=8192, offset=333238272, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[318]: n_dims = 2, name = a.blk.16.ffn_up_1.weight, tensor_size=2097152, offset=333246464, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[319]: n_dims = 1, name = a.blk.16.ffn_down_1.bias, tensor_size=2048, offset=335343616, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[320]: n_dims = 2, name = a.blk.16.ffn_down_1.weight, tensor_size=2097152, offset=335345664, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[321]: n_dims = 1, name = a.blk.16.norm_conv.bias, tensor_size=2048, offset=337442816, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[322]: n_dims = 1, name = a.blk.16.norm_conv.weight, tensor_size=2048, offset=337444864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[323]: n_dims = 1, name = a.blk.16.ffn_norm.bias, tensor_size=2048, offset=337446912, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[324]: n_dims = 1, name = a.blk.16.ffn_norm.weight, tensor_size=2048, offset=337448960, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[325]: n_dims = 1, name = a.blk.16.ffn_norm_1.bias, tensor_size=2048, offset=337451008, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[326]: n_dims = 1, name = a.blk.16.ffn_norm_1.weight, tensor_size=2048, offset=337453056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[327]: n_dims = 1, name = a.blk.16.ln2.bias, tensor_size=2048, offset=337455104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[328]: n_dims = 1, name = a.blk.16.ln2.weight, tensor_size=2048, offset=337457152, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[329]: n_dims = 1, name = a.blk.16.ln1.bias, tensor_size=2048, offset=337459200, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[330]: n_dims = 1, name = a.blk.16.ln1.weight, tensor_size=2048, offset=337461248, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[331]: n_dims = 1, name = a.blk.16.attn_k.bias, tensor_size=2048, offset=337463296, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[332]: n_dims = 2, name = a.blk.16.attn_k.weight, tensor_size=524288, offset=337465344, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[333]: n_dims = 1, name = a.blk.16.attn_out.bias, tensor_size=2048, offset=337989632, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[334]: n_dims = 2, name = a.blk.16.attn_out.weight, tensor_size=524288, offset=337991680, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[335]: n_dims = 2, name = a.blk.16.linear_pos.weight, tensor_size=524288, offset=338515968, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[336]: n_dims = 1, name = a.blk.16.attn_q.bias, tensor_size=2048, offset=339040256, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[337]: n_dims = 2, name = a.blk.16.attn_q.weight, tensor_size=524288, offset=339042304, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[338]: n_dims = 1, name = a.blk.16.attn_v.bias, tensor_size=2048, offset=339566592, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[339]: n_dims = 2, name = a.blk.16.attn_v.weight, tensor_size=524288, offset=339568640, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[340]: n_dims = 2, name = a.blk.16.pos_bias_u, tensor_size=2048, offset=340092928, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[341]: n_dims = 2, name = a.blk.16.pos_bias_v, tensor_size=2048, offset=340094976, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[342]: n_dims = 1, name = a.blk.2.conv_norm.weight, tensor_size=2048, offset=340097024, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[343]: n_dims = 1, name = a.blk.2.conv_norm.bias, tensor_size=2048, offset=340099072, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[344]: n_dims = 1, name = a.blk.2.conv_dw.bias, tensor_size=2048, offset=340101120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[345]: n_dims = 2, name = a.blk.2.conv_dw.weight, tensor_size=18432, offset=340103168, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[346]: n_dims = 1, name = a.blk.2.conv_pw1.bias, tensor_size=4096, offset=340121600, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[347]: n_dims = 2, name = a.blk.2.conv_pw1.weight, tensor_size=2097152, offset=340125696, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[348]: n_dims = 1, name = a.blk.2.conv_pw2.bias, tensor_size=2048, offset=342222848, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[349]: n_dims = 2, name = a.blk.2.conv_pw2.weight, tensor_size=1048576, offset=342224896, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[350]: n_dims = 1, name = a.blk.2.ffn_up.bias, tensor_size=8192, offset=343273472, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[351]: n_dims = 2, name = a.blk.2.ffn_up.weight, tensor_size=2097152, offset=343281664, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[352]: n_dims = 1, name = a.blk.2.ffn_down.bias, tensor_size=2048, offset=345378816, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[353]: n_dims = 2, name = a.blk.2.ffn_down.weight, tensor_size=2097152, offset=345380864, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[354]: n_dims = 1, name = a.blk.2.ffn_up_1.bias, tensor_size=8192, offset=347478016, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[355]: n_dims = 2, name = a.blk.2.ffn_up_1.weight, tensor_size=2097152, offset=347486208, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[356]: n_dims = 1, name = a.blk.2.ffn_down_1.bias, tensor_size=2048, offset=349583360, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[357]: n_dims = 2, name = a.blk.2.ffn_down_1.weight, tensor_size=2097152, offset=349585408, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[358]: n_dims = 1, name = a.blk.2.norm_conv.bias, tensor_size=2048, offset=351682560, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[359]: n_dims = 1, name = a.blk.2.norm_conv.weight, tensor_size=2048, offset=351684608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[360]: n_dims = 1, name = a.blk.2.ffn_norm.bias, tensor_size=2048, offset=351686656, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[361]: n_dims = 1, name = a.blk.2.ffn_norm.weight, tensor_size=2048, offset=351688704, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[362]: n_dims = 1, name = a.blk.2.ffn_norm_1.bias, tensor_size=2048, offset=351690752, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[363]: n_dims = 1, name = a.blk.2.ffn_norm_1.weight, tensor_size=2048, offset=351692800, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[364]: n_dims = 1, name = a.blk.2.ln2.bias, tensor_size=2048, offset=351694848, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[365]: n_dims = 1, name = a.blk.2.ln2.weight, tensor_size=2048, offset=351696896, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[366]: n_dims = 1, name = a.blk.2.ln1.bias, tensor_size=2048, offset=351698944, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[367]: n_dims = 1, name = a.blk.2.ln1.weight, tensor_size=2048, offset=351700992, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[368]: n_dims = 1, name = a.blk.2.attn_k.bias, tensor_size=2048, offset=351703040, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[369]: n_dims = 2, name = a.blk.2.attn_k.weight, tensor_size=524288, offset=351705088, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[370]: n_dims = 1, name = a.blk.2.attn_out.bias, tensor_size=2048, offset=352229376, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[371]: n_dims = 2, name = a.blk.2.attn_out.weight, tensor_size=524288, offset=352231424, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[372]: n_dims = 2, name = a.blk.2.linear_pos.weight, tensor_size=524288, offset=352755712, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[373]: n_dims = 1, name = a.blk.2.attn_q.bias, tensor_size=2048, offset=353280000, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[374]: n_dims = 2, name = a.blk.2.attn_q.weight, tensor_size=524288, offset=353282048, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[375]: n_dims = 1, name = a.blk.2.attn_v.bias, tensor_size=2048, offset=353806336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[376]: n_dims = 2, name = a.blk.2.attn_v.weight, tensor_size=524288, offset=353808384, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[377]: n_dims = 2, name = a.blk.2.pos_bias_u, tensor_size=2048, offset=354332672, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[378]: n_dims = 2, name = a.blk.2.pos_bias_v, tensor_size=2048, offset=354334720, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[379]: n_dims = 1, name = a.blk.3.conv_norm.weight, tensor_size=2048, offset=354336768, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[380]: n_dims = 1, name = a.blk.3.conv_norm.bias, tensor_size=2048, offset=354338816, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[381]: n_dims = 1, name = a.blk.3.conv_dw.bias, tensor_size=2048, offset=354340864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[382]: n_dims = 2, name = a.blk.3.conv_dw.weight, tensor_size=18432, offset=354342912, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[383]: n_dims = 1, name = a.blk.3.conv_pw1.bias, tensor_size=4096, offset=354361344, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[384]: n_dims = 2, name = a.blk.3.conv_pw1.weight, tensor_size=2097152, offset=354365440, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[385]: n_dims = 1, name = a.blk.3.conv_pw2.bias, tensor_size=2048, offset=356462592, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[386]: n_dims = 2, name = a.blk.3.conv_pw2.weight, tensor_size=1048576, offset=356464640, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[387]: n_dims = 1, name = a.blk.3.ffn_up.bias, tensor_size=8192, offset=357513216, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[388]: n_dims = 2, name = a.blk.3.ffn_up.weight, tensor_size=2097152, offset=357521408, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[389]: n_dims = 1, name = a.blk.3.ffn_down.bias, tensor_size=2048, offset=359618560, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[390]: n_dims = 2, name = a.blk.3.ffn_down.weight, tensor_size=2097152, offset=359620608, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[391]: n_dims = 1, name = a.blk.3.ffn_up_1.bias, tensor_size=8192, offset=361717760, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[392]: n_dims = 2, name = a.blk.3.ffn_up_1.weight, tensor_size=2097152, offset=361725952, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[393]: n_dims = 1, name = a.blk.3.ffn_down_1.bias, tensor_size=2048, offset=363823104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[394]: n_dims = 2, name = a.blk.3.ffn_down_1.weight, tensor_size=2097152, offset=363825152, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[395]: n_dims = 1, name = a.blk.3.norm_conv.bias, tensor_size=2048, offset=365922304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[396]: n_dims = 1, name = a.blk.3.norm_conv.weight, tensor_size=2048, offset=365924352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[397]: n_dims = 1, name = a.blk.3.ffn_norm.bias, tensor_size=2048, offset=365926400, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[398]: n_dims = 1, name = a.blk.3.ffn_norm.weight, tensor_size=2048, offset=365928448, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[399]: n_dims = 1, name = a.blk.3.ffn_norm_1.bias, tensor_size=2048, offset=365930496, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[400]: n_dims = 1, name = a.blk.3.ffn_norm_1.weight, tensor_size=2048, offset=365932544, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[401]: n_dims = 1, name = a.blk.3.ln2.bias, tensor_size=2048, offset=365934592, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[402]: n_dims = 1, name = a.blk.3.ln2.weight, tensor_size=2048, offset=365936640, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[403]: n_dims = 1, name = a.blk.3.ln1.bias, tensor_size=2048, offset=365938688, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[404]: n_dims = 1, name = a.blk.3.ln1.weight, tensor_size=2048, offset=365940736, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[405]: n_dims = 1, name = a.blk.3.attn_k.bias, tensor_size=2048, offset=365942784, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[406]: n_dims = 2, name = a.blk.3.attn_k.weight, tensor_size=524288, offset=365944832, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[407]: n_dims = 1, name = a.blk.3.attn_out.bias, tensor_size=2048, offset=366469120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[408]: n_dims = 2, name = a.blk.3.attn_out.weight, tensor_size=524288, offset=366471168, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[409]: n_dims = 2, name = a.blk.3.linear_pos.weight, tensor_size=524288, offset=366995456, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[410]: n_dims = 1, name = a.blk.3.attn_q.bias, tensor_size=2048, offset=367519744, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[411]: n_dims = 2, name = a.blk.3.attn_q.weight, tensor_size=524288, offset=367521792, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[412]: n_dims = 1, name = a.blk.3.attn_v.bias, tensor_size=2048, offset=368046080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[413]: n_dims = 2, name = a.blk.3.attn_v.weight, tensor_size=524288, offset=368048128, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[414]: n_dims = 2, name = a.blk.3.pos_bias_u, tensor_size=2048, offset=368572416, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[415]: n_dims = 2, name = a.blk.3.pos_bias_v, tensor_size=2048, offset=368574464, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[416]: n_dims = 1, name = a.blk.4.conv_norm.weight, tensor_size=2048, offset=368576512, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[417]: n_dims = 1, name = a.blk.4.conv_norm.bias, tensor_size=2048, offset=368578560, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[418]: n_dims = 1, name = a.blk.4.conv_dw.bias, tensor_size=2048, offset=368580608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[419]: n_dims = 2, name = a.blk.4.conv_dw.weight, tensor_size=18432, offset=368582656, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[420]: n_dims = 1, name = a.blk.4.conv_pw1.bias, tensor_size=4096, offset=368601088, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[421]: n_dims = 2, name = a.blk.4.conv_pw1.weight, tensor_size=2097152, offset=368605184, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[422]: n_dims = 1, name = a.blk.4.conv_pw2.bias, tensor_size=2048, offset=370702336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[423]: n_dims = 2, name = a.blk.4.conv_pw2.weight, tensor_size=1048576, offset=370704384, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[424]: n_dims = 1, name = a.blk.4.ffn_up.bias, tensor_size=8192, offset=371752960, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[425]: n_dims = 2, name = a.blk.4.ffn_up.weight, tensor_size=2097152, offset=371761152, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[426]: n_dims = 1, name = a.blk.4.ffn_down.bias, tensor_size=2048, offset=373858304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[427]: n_dims = 2, name = a.blk.4.ffn_down.weight, tensor_size=2097152, offset=373860352, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[428]: n_dims = 1, name = a.blk.4.ffn_up_1.bias, tensor_size=8192, offset=375957504, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[429]: n_dims = 2, name = a.blk.4.ffn_up_1.weight, tensor_size=2097152, offset=375965696, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[430]: n_dims = 1, name = a.blk.4.ffn_down_1.bias, tensor_size=2048, offset=378062848, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[431]: n_dims = 2, name = a.blk.4.ffn_down_1.weight, tensor_size=2097152, offset=378064896, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[432]: n_dims = 1, name = a.blk.4.norm_conv.bias, tensor_size=2048, offset=380162048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[433]: n_dims = 1, name = a.blk.4.norm_conv.weight, tensor_size=2048, offset=380164096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[434]: n_dims = 1, name = a.blk.4.ffn_norm.bias, tensor_size=2048, offset=380166144, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[435]: n_dims = 1, name = a.blk.4.ffn_norm.weight, tensor_size=2048, offset=380168192, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[436]: n_dims = 1, name = a.blk.4.ffn_norm_1.bias, tensor_size=2048, offset=380170240, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[437]: n_dims = 1, name = a.blk.4.ffn_norm_1.weight, tensor_size=2048, offset=380172288, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[438]: n_dims = 1, name = a.blk.4.ln2.bias, tensor_size=2048, offset=380174336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[439]: n_dims = 1, name = a.blk.4.ln2.weight, tensor_size=2048, offset=380176384, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[440]: n_dims = 1, name = a.blk.4.ln1.bias, tensor_size=2048, offset=380178432, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[441]: n_dims = 1, name = a.blk.4.ln1.weight, tensor_size=2048, offset=380180480, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[442]: n_dims = 1, name = a.blk.4.attn_k.bias, tensor_size=2048, offset=380182528, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[443]: n_dims = 2, name = a.blk.4.attn_k.weight, tensor_size=524288, offset=380184576, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[444]: n_dims = 1, name = a.blk.4.attn_out.bias, tensor_size=2048, offset=380708864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[445]: n_dims = 2, name = a.blk.4.attn_out.weight, tensor_size=524288, offset=380710912, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[446]: n_dims = 2, name = a.blk.4.linear_pos.weight, tensor_size=524288, offset=381235200, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[447]: n_dims = 1, name = a.blk.4.attn_q.bias, tensor_size=2048, offset=381759488, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[448]: n_dims = 2, name = a.blk.4.attn_q.weight, tensor_size=524288, offset=381761536, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[449]: n_dims = 1, name = a.blk.4.attn_v.bias, tensor_size=2048, offset=382285824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[450]: n_dims = 2, name = a.blk.4.attn_v.weight, tensor_size=524288, offset=382287872, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[451]: n_dims = 2, name = a.blk.4.pos_bias_u, tensor_size=2048, offset=382812160, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[452]: n_dims = 2, name = a.blk.4.pos_bias_v, tensor_size=2048, offset=382814208, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[453]: n_dims = 1, name = a.blk.5.conv_norm.weight, tensor_size=2048, offset=382816256, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[454]: n_dims = 1, name = a.blk.5.conv_norm.bias, tensor_size=2048, offset=382818304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[455]: n_dims = 1, name = a.blk.5.conv_dw.bias, tensor_size=2048, offset=382820352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[456]: n_dims = 2, name = a.blk.5.conv_dw.weight, tensor_size=18432, offset=382822400, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[457]: n_dims = 1, name = a.blk.5.conv_pw1.bias, tensor_size=4096, offset=382840832, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[458]: n_dims = 2, name = a.blk.5.conv_pw1.weight, tensor_size=2097152, offset=382844928, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[459]: n_dims = 1, name = a.blk.5.conv_pw2.bias, tensor_size=2048, offset=384942080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[460]: n_dims = 2, name = a.blk.5.conv_pw2.weight, tensor_size=1048576, offset=384944128, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[461]: n_dims = 1, name = a.blk.5.ffn_up.bias, tensor_size=8192, offset=385992704, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[462]: n_dims = 2, name = a.blk.5.ffn_up.weight, tensor_size=2097152, offset=386000896, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[463]: n_dims = 1, name = a.blk.5.ffn_down.bias, tensor_size=2048, offset=388098048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[464]: n_dims = 2, name = a.blk.5.ffn_down.weight, tensor_size=2097152, offset=388100096, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[465]: n_dims = 1, name = a.blk.5.ffn_up_1.bias, tensor_size=8192, offset=390197248, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[466]: n_dims = 2, name = a.blk.5.ffn_up_1.weight, tensor_size=2097152, offset=390205440, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[467]: n_dims = 1, name = a.blk.5.ffn_down_1.bias, tensor_size=2048, offset=392302592, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[468]: n_dims = 2, name = a.blk.5.ffn_down_1.weight, tensor_size=2097152, offset=392304640, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[469]: n_dims = 1, name = a.blk.5.norm_conv.bias, tensor_size=2048, offset=394401792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[470]: n_dims = 1, name = a.blk.5.norm_conv.weight, tensor_size=2048, offset=394403840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[471]: n_dims = 1, name = a.blk.5.ffn_norm.bias, tensor_size=2048, offset=394405888, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[472]: n_dims = 1, name = a.blk.5.ffn_norm.weight, tensor_size=2048, offset=394407936, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[473]: n_dims = 1, name = a.blk.5.ffn_norm_1.bias, tensor_size=2048, offset=394409984, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[474]: n_dims = 1, name = a.blk.5.ffn_norm_1.weight, tensor_size=2048, offset=394412032, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[475]: n_dims = 1, name = a.blk.5.ln2.bias, tensor_size=2048, offset=394414080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[476]: n_dims = 1, name = a.blk.5.ln2.weight, tensor_size=2048, offset=394416128, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[477]: n_dims = 1, name = a.blk.5.ln1.bias, tensor_size=2048, offset=394418176, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[478]: n_dims = 1, name = a.blk.5.ln1.weight, tensor_size=2048, offset=394420224, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[479]: n_dims = 1, name = a.blk.5.attn_k.bias, tensor_size=2048, offset=394422272, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[480]: n_dims = 2, name = a.blk.5.attn_k.weight, tensor_size=524288, offset=394424320, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[481]: n_dims = 1, name = a.blk.5.attn_out.bias, tensor_size=2048, offset=394948608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[482]: n_dims = 2, name = a.blk.5.attn_out.weight, tensor_size=524288, offset=394950656, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[483]: n_dims = 2, name = a.blk.5.linear_pos.weight, tensor_size=524288, offset=395474944, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[484]: n_dims = 1, name = a.blk.5.attn_q.bias, tensor_size=2048, offset=395999232, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[485]: n_dims = 2, name = a.blk.5.attn_q.weight, tensor_size=524288, offset=396001280, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[486]: n_dims = 1, name = a.blk.5.attn_v.bias, tensor_size=2048, offset=396525568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[487]: n_dims = 2, name = a.blk.5.attn_v.weight, tensor_size=524288, offset=396527616, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[488]: n_dims = 2, name = a.blk.5.pos_bias_u, tensor_size=2048, offset=397051904, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[489]: n_dims = 2, name = a.blk.5.pos_bias_v, tensor_size=2048, offset=397053952, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[490]: n_dims = 1, name = a.blk.6.conv_norm.weight, tensor_size=2048, offset=397056000, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[491]: n_dims = 1, name = a.blk.6.conv_norm.bias, tensor_size=2048, offset=397058048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[492]: n_dims = 1, name = a.blk.6.conv_dw.bias, tensor_size=2048, offset=397060096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[493]: n_dims = 2, name = a.blk.6.conv_dw.weight, tensor_size=18432, offset=397062144, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[494]: n_dims = 1, name = a.blk.6.conv_pw1.bias, tensor_size=4096, offset=397080576, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[495]: n_dims = 2, name = a.blk.6.conv_pw1.weight, tensor_size=2097152, offset=397084672, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[496]: n_dims = 1, name = a.blk.6.conv_pw2.bias, tensor_size=2048, offset=399181824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[497]: n_dims = 2, name = a.blk.6.conv_pw2.weight, tensor_size=1048576, offset=399183872, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[498]: n_dims = 1, name = a.blk.6.ffn_up.bias, tensor_size=8192, offset=400232448, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[499]: n_dims = 2, name = a.blk.6.ffn_up.weight, tensor_size=2097152, offset=400240640, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[500]: n_dims = 1, name = a.blk.6.ffn_down.bias, tensor_size=2048, offset=402337792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[501]: n_dims = 2, name = a.blk.6.ffn_down.weight, tensor_size=2097152, offset=402339840, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[502]: n_dims = 1, name = a.blk.6.ffn_up_1.bias, tensor_size=8192, offset=404436992, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[503]: n_dims = 2, name = a.blk.6.ffn_up_1.weight, tensor_size=2097152, offset=404445184, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[504]: n_dims = 1, name = a.blk.6.ffn_down_1.bias, tensor_size=2048, offset=406542336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[505]: n_dims = 2, name = a.blk.6.ffn_down_1.weight, tensor_size=2097152, offset=406544384, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[506]: n_dims = 1, name = a.blk.6.norm_conv.bias, tensor_size=2048, offset=408641536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[507]: n_dims = 1, name = a.blk.6.norm_conv.weight, tensor_size=2048, offset=408643584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[508]: n_dims = 1, name = a.blk.6.ffn_norm.bias, tensor_size=2048, offset=408645632, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[509]: n_dims = 1, name = a.blk.6.ffn_norm.weight, tensor_size=2048, offset=408647680, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[510]: n_dims = 1, name = a.blk.6.ffn_norm_1.bias, tensor_size=2048, offset=408649728, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[511]: n_dims = 1, name = a.blk.6.ffn_norm_1.weight, tensor_size=2048, offset=408651776, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[512]: n_dims = 1, name = a.blk.6.ln2.bias, tensor_size=2048, offset=408653824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[513]: n_dims = 1, name = a.blk.6.ln2.weight, tensor_size=2048, offset=408655872, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[514]: n_dims = 1, name = a.blk.6.ln1.bias, tensor_size=2048, offset=408657920, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[515]: n_dims = 1, name = a.blk.6.ln1.weight, tensor_size=2048, offset=408659968, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[516]: n_dims = 1, name = a.blk.6.attn_k.bias, tensor_size=2048, offset=408662016, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[517]: n_dims = 2, name = a.blk.6.attn_k.weight, tensor_size=524288, offset=408664064, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[518]: n_dims = 1, name = a.blk.6.attn_out.bias, tensor_size=2048, offset=409188352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[519]: n_dims = 2, name = a.blk.6.attn_out.weight, tensor_size=524288, offset=409190400, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[520]: n_dims = 2, name = a.blk.6.linear_pos.weight, tensor_size=524288, offset=409714688, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[521]: n_dims = 1, name = a.blk.6.attn_q.bias, tensor_size=2048, offset=410238976, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[522]: n_dims = 2, name = a.blk.6.attn_q.weight, tensor_size=524288, offset=410241024, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[523]: n_dims = 1, name = a.blk.6.attn_v.bias, tensor_size=2048, offset=410765312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[524]: n_dims = 2, name = a.blk.6.attn_v.weight, tensor_size=524288, offset=410767360, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[525]: n_dims = 2, name = a.blk.6.pos_bias_u, tensor_size=2048, offset=411291648, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[526]: n_dims = 2, name = a.blk.6.pos_bias_v, tensor_size=2048, offset=411293696, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[527]: n_dims = 1, name = a.blk.7.conv_norm.weight, tensor_size=2048, offset=411295744, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[528]: n_dims = 1, name = a.blk.7.conv_norm.bias, tensor_size=2048, offset=411297792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[529]: n_dims = 1, name = a.blk.7.conv_dw.bias, tensor_size=2048, offset=411299840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[530]: n_dims = 2, name = a.blk.7.conv_dw.weight, tensor_size=18432, offset=411301888, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[531]: n_dims = 1, name = a.blk.7.conv_pw1.bias, tensor_size=4096, offset=411320320, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[532]: n_dims = 2, name = a.blk.7.conv_pw1.weight, tensor_size=2097152, offset=411324416, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[533]: n_dims = 1, name = a.blk.7.conv_pw2.bias, tensor_size=2048, offset=413421568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[534]: n_dims = 2, name = a.blk.7.conv_pw2.weight, tensor_size=1048576, offset=413423616, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[535]: n_dims = 1, name = a.blk.7.ffn_up.bias, tensor_size=8192, offset=414472192, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[536]: n_dims = 2, name = a.blk.7.ffn_up.weight, tensor_size=2097152, offset=414480384, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[537]: n_dims = 1, name = a.blk.7.ffn_down.bias, tensor_size=2048, offset=416577536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[538]: n_dims = 2, name = a.blk.7.ffn_down.weight, tensor_size=2097152, offset=416579584, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[539]: n_dims = 1, name = a.blk.7.ffn_up_1.bias, tensor_size=8192, offset=418676736, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[540]: n_dims = 2, name = a.blk.7.ffn_up_1.weight, tensor_size=2097152, offset=418684928, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[541]: n_dims = 1, name = a.blk.7.ffn_down_1.bias, tensor_size=2048, offset=420782080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[542]: n_dims = 2, name = a.blk.7.ffn_down_1.weight, tensor_size=2097152, offset=420784128, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[543]: n_dims = 1, name = a.blk.7.norm_conv.bias, tensor_size=2048, offset=422881280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[544]: n_dims = 1, name = a.blk.7.norm_conv.weight, tensor_size=2048, offset=422883328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[545]: n_dims = 1, name = a.blk.7.ffn_norm.bias, tensor_size=2048, offset=422885376, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[546]: n_dims = 1, name = a.blk.7.ffn_norm.weight, tensor_size=2048, offset=422887424, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[547]: n_dims = 1, name = a.blk.7.ffn_norm_1.bias, tensor_size=2048, offset=422889472, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[548]: n_dims = 1, name = a.blk.7.ffn_norm_1.weight, tensor_size=2048, offset=422891520, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[549]: n_dims = 1, name = a.blk.7.ln2.bias, tensor_size=2048, offset=422893568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[550]: n_dims = 1, name = a.blk.7.ln2.weight, tensor_size=2048, offset=422895616, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[551]: n_dims = 1, name = a.blk.7.ln1.bias, tensor_size=2048, offset=422897664, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[552]: n_dims = 1, name = a.blk.7.ln1.weight, tensor_size=2048, offset=422899712, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[553]: n_dims = 1, name = a.blk.7.attn_k.bias, tensor_size=2048, offset=422901760, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[554]: n_dims = 2, name = a.blk.7.attn_k.weight, tensor_size=524288, offset=422903808, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[555]: n_dims = 1, name = a.blk.7.attn_out.bias, tensor_size=2048, offset=423428096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[556]: n_dims = 2, name = a.blk.7.attn_out.weight, tensor_size=524288, offset=423430144, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[557]: n_dims = 2, name = a.blk.7.linear_pos.weight, tensor_size=524288, offset=423954432, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[558]: n_dims = 1, name = a.blk.7.attn_q.bias, tensor_size=2048, offset=424478720, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[559]: n_dims = 2, name = a.blk.7.attn_q.weight, tensor_size=524288, offset=424480768, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[560]: n_dims = 1, name = a.blk.7.attn_v.bias, tensor_size=2048, offset=425005056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[561]: n_dims = 2, name = a.blk.7.attn_v.weight, tensor_size=524288, offset=425007104, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[562]: n_dims = 2, name = a.blk.7.pos_bias_u, tensor_size=2048, offset=425531392, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[563]: n_dims = 2, name = a.blk.7.pos_bias_v, tensor_size=2048, offset=425533440, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[564]: n_dims = 1, name = a.blk.8.conv_norm.weight, tensor_size=2048, offset=425535488, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[565]: n_dims = 1, name = a.blk.8.conv_norm.bias, tensor_size=2048, offset=425537536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[566]: n_dims = 1, name = a.blk.8.conv_dw.bias, tensor_size=2048, offset=425539584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[567]: n_dims = 2, name = a.blk.8.conv_dw.weight, tensor_size=18432, offset=425541632, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[568]: n_dims = 1, name = a.blk.8.conv_pw1.bias, tensor_size=4096, offset=425560064, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[569]: n_dims = 2, name = a.blk.8.conv_pw1.weight, tensor_size=2097152, offset=425564160, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[570]: n_dims = 1, name = a.blk.8.conv_pw2.bias, tensor_size=2048, offset=427661312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[571]: n_dims = 2, name = a.blk.8.conv_pw2.weight, tensor_size=1048576, offset=427663360, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[572]: n_dims = 1, name = a.blk.8.ffn_up.bias, tensor_size=8192, offset=428711936, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[573]: n_dims = 2, name = a.blk.8.ffn_up.weight, tensor_size=2097152, offset=428720128, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[574]: n_dims = 1, name = a.blk.8.ffn_down.bias, tensor_size=2048, offset=430817280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[575]: n_dims = 2, name = a.blk.8.ffn_down.weight, tensor_size=2097152, offset=430819328, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[576]: n_dims = 1, name = a.blk.8.ffn_up_1.bias, tensor_size=8192, offset=432916480, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[577]: n_dims = 2, name = a.blk.8.ffn_up_1.weight, tensor_size=2097152, offset=432924672, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[578]: n_dims = 1, name = a.blk.8.ffn_down_1.bias, tensor_size=2048, offset=435021824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[579]: n_dims = 2, name = a.blk.8.ffn_down_1.weight, tensor_size=2097152, offset=435023872, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[580]: n_dims = 1, name = a.blk.8.norm_conv.bias, tensor_size=2048, offset=437121024, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[581]: n_dims = 1, name = a.blk.8.norm_conv.weight, tensor_size=2048, offset=437123072, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[582]: n_dims = 1, name = a.blk.8.ffn_norm.bias, tensor_size=2048, offset=437125120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[583]: n_dims = 1, name = a.blk.8.ffn_norm.weight, tensor_size=2048, offset=437127168, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[584]: n_dims = 1, name = a.blk.8.ffn_norm_1.bias, tensor_size=2048, offset=437129216, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[585]: n_dims = 1, name = a.blk.8.ffn_norm_1.weight, tensor_size=2048, offset=437131264, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[586]: n_dims = 1, name = a.blk.8.ln2.bias, tensor_size=2048, offset=437133312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[587]: n_dims = 1, name = a.blk.8.ln2.weight, tensor_size=2048, offset=437135360, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[588]: n_dims = 1, name = a.blk.8.ln1.bias, tensor_size=2048, offset=437137408, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[589]: n_dims = 1, name = a.blk.8.ln1.weight, tensor_size=2048, offset=437139456, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[590]: n_dims = 1, name = a.blk.8.attn_k.bias, tensor_size=2048, offset=437141504, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[591]: n_dims = 2, name = a.blk.8.attn_k.weight, tensor_size=524288, offset=437143552, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[592]: n_dims = 1, name = a.blk.8.attn_out.bias, tensor_size=2048, offset=437667840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[593]: n_dims = 2, name = a.blk.8.attn_out.weight, tensor_size=524288, offset=437669888, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[594]: n_dims = 2, name = a.blk.8.linear_pos.weight, tensor_size=524288, offset=438194176, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[595]: n_dims = 1, name = a.blk.8.attn_q.bias, tensor_size=2048, offset=438718464, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[596]: n_dims = 2, name = a.blk.8.attn_q.weight, tensor_size=524288, offset=438720512, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[597]: n_dims = 1, name = a.blk.8.attn_v.bias, tensor_size=2048, offset=439244800, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[598]: n_dims = 2, name = a.blk.8.attn_v.weight, tensor_size=524288, offset=439246848, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[599]: n_dims = 2, name = a.blk.8.pos_bias_u, tensor_size=2048, offset=439771136, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[600]: n_dims = 2, name = a.blk.8.pos_bias_v, tensor_size=2048, offset=439773184, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[601]: n_dims = 1, name = a.blk.9.conv_norm.weight, tensor_size=2048, offset=439775232, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[602]: n_dims = 1, name = a.blk.9.conv_norm.bias, tensor_size=2048, offset=439777280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[603]: n_dims = 1, name = a.blk.9.conv_dw.bias, tensor_size=2048, offset=439779328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[604]: n_dims = 2, name = a.blk.9.conv_dw.weight, tensor_size=18432, offset=439781376, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[605]: n_dims = 1, name = a.blk.9.conv_pw1.bias, tensor_size=4096, offset=439799808, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[606]: n_dims = 2, name = a.blk.9.conv_pw1.weight, tensor_size=2097152, offset=439803904, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[607]: n_dims = 1, name = a.blk.9.conv_pw2.bias, tensor_size=2048, offset=441901056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[608]: n_dims = 2, name = a.blk.9.conv_pw2.weight, tensor_size=1048576, offset=441903104, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[609]: n_dims = 1, name = a.blk.9.ffn_up.bias, tensor_size=8192, offset=442951680, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[610]: n_dims = 2, name = a.blk.9.ffn_up.weight, tensor_size=2097152, offset=442959872, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[611]: n_dims = 1, name = a.blk.9.ffn_down.bias, tensor_size=2048, offset=445057024, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[612]: n_dims = 2, name = a.blk.9.ffn_down.weight, tensor_size=2097152, offset=445059072, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[613]: n_dims = 1, name = a.blk.9.ffn_up_1.bias, tensor_size=8192, offset=447156224, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[614]: n_dims = 2, name = a.blk.9.ffn_up_1.weight, tensor_size=2097152, offset=447164416, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[615]: n_dims = 1, name = a.blk.9.ffn_down_1.bias, tensor_size=2048, offset=449261568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[616]: n_dims = 2, name = a.blk.9.ffn_down_1.weight, tensor_size=2097152, offset=449263616, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[617]: n_dims = 1, name = a.blk.9.norm_conv.bias, tensor_size=2048, offset=451360768, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[618]: n_dims = 1, name = a.blk.9.norm_conv.weight, tensor_size=2048, offset=451362816, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[619]: n_dims = 1, name = a.blk.9.ffn_norm.bias, tensor_size=2048, offset=451364864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[620]: n_dims = 1, name = a.blk.9.ffn_norm.weight, tensor_size=2048, offset=451366912, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[621]: n_dims = 1, name = a.blk.9.ffn_norm_1.bias, tensor_size=2048, offset=451368960, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[622]: n_dims = 1, name = a.blk.9.ffn_norm_1.weight, tensor_size=2048, offset=451371008, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[623]: n_dims = 1, name = a.blk.9.ln2.bias, tensor_size=2048, offset=451373056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[624]: n_dims = 1, name = a.blk.9.ln2.weight, tensor_size=2048, offset=451375104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[625]: n_dims = 1, name = a.blk.9.ln1.bias, tensor_size=2048, offset=451377152, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[626]: n_dims = 1, name = a.blk.9.ln1.weight, tensor_size=2048, offset=451379200, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[627]: n_dims = 1, name = a.blk.9.attn_k.bias, tensor_size=2048, offset=451381248, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[628]: n_dims = 2, name = a.blk.9.attn_k.weight, tensor_size=524288, offset=451383296, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[629]: n_dims = 1, name = a.blk.9.attn_out.bias, tensor_size=2048, offset=451907584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[630]: n_dims = 2, name = a.blk.9.attn_out.weight, tensor_size=524288, offset=451909632, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[631]: n_dims = 2, name = a.blk.9.linear_pos.weight, tensor_size=524288, offset=452433920, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[632]: n_dims = 1, name = a.blk.9.attn_q.bias, tensor_size=2048, offset=452958208, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[633]: n_dims = 2, name = a.blk.9.attn_q.weight, tensor_size=524288, offset=452960256, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[634]: n_dims = 1, name = a.blk.9.attn_v.bias, tensor_size=2048, offset=453484544, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[635]: n_dims = 2, name = a.blk.9.attn_v.weight, tensor_size=524288, offset=453486592, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[636]: n_dims = 2, name = a.blk.9.pos_bias_u, tensor_size=2048, offset=454010880, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[637]: n_dims = 2, name = a.blk.9.pos_bias_v, tensor_size=2048, offset=454012928, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[638]: n_dims = 3, name = a.conv1d.0.bias, tensor_size=1024, offset=454014976, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[639]: n_dims = 4, name = a.conv1d.0.weight, tensor_size=9216, offset=454016000, shape:[3, 3, 1, 256], type = f32
clip_model_loader: tensor[640]: n_dims = 3, name = a.conv1d.2.bias, tensor_size=1024, offset=454025216, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[641]: n_dims = 4, name = a.conv1d.2.weight, tensor_size=9216, offset=454026240, shape:[3, 3, 1, 256], type = f32
clip_model_loader: tensor[642]: n_dims = 3, name = a.conv1d.3.bias, tensor_size=1024, offset=454035456, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[643]: n_dims = 4, name = a.conv1d.3.weight, tensor_size=262144, offset=454036480, shape:[1, 1, 256, 256], type = f32
clip_model_loader: tensor[644]: n_dims = 3, name = a.conv1d.5.bias, tensor_size=1024, offset=454298624, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[645]: n_dims = 4, name = a.conv1d.5.weight, tensor_size=9216, offset=454299648, shape:[3, 3, 1, 256], type = f32
clip_model_loader: tensor[646]: n_dims = 3, name = a.conv1d.6.bias, tensor_size=1024, offset=454308864, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[647]: n_dims = 4, name = a.conv1d.6.weight, tensor_size=262144, offset=454309888, shape:[1, 1, 256, 256], type = f32
clip_model_loader: tensor[648]: n_dims = 1, name = a.pre_encode.out.bias, tensor_size=2048, offset=454572032, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[649]: n_dims = 2, name = a.pre_encode.out.weight, tensor_size=4194304, offset=454574080, shape:[4096, 512, 1, 1], type = f16
clip_ctx: CLIP using CUDA0 backend
load_hparams: projector: lfm2a
load_hparams: n_embd: 512
load_hparams: n_head: 8
load_hparams: n_ff: 512
load_hparams: n_layer: 17
load_hparams: ffn_op: gelu_quick
load_hparams: projection_dim: 2048

--- audio hparams ---
load_hparams: n_mel_bins: 128
load_hparams: proj_stack_factor: 0
load_hparams: audio_chunk_len: 1
load_hparams: audio_sample_rate: 16000
load_hparams: audio_n_fft: 512
load_hparams: audio_window_len: 400
load_hparams: audio_hop_len: 160

load_hparams: model size: 437.52 MiB
load_hparams: metadata size: 0.23 MiB
load_tensors: loaded 648 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/mmproj-LFM2.5-Audio-1.5B-F16.gguf
warmup: warmup with audio size = 3000
alloc_compute_meta: CUDA0 compute buffer size = 195.19 MiB
alloc_compute_meta: CPU compute buffer size = 2.93 MiB
alloc_compute_meta: graph splits = 35, nodes = 1547
warmup: flash attention is enabled
warmup: *****************************************************************
warmup: WARNING: the CLIP graph uses unsupported operators by the backend
warmup: the performance will be suboptimal
warmup: list of unsupported ops (backend=CUDA0):
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: flash attention is enabled
warmup: please report this on github as an issue
warmup: ref: #16837 (comment)
warmup: *****************************************************************
init_audio: audio input is in experimental stage and may have reduced quality:
#13759
audio_decoder_ggml_ctx: using CUDA0 backend
audio_decoder_ggml_ctx: using GPU+CPU backend
load_gguf: Loaded 85 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/vocoder-LFM2.5-Audio-1.5B-F16.gguf
Model loaded successfully!
Starting HTTP server on 127.0.0.1:8086
Server ready at http://127.0.0.1:8086
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
add_text: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user

audio_tokens->n_tokens = 26
add_text: <|im_end|>
<|im_start|>assistant

encoding audio slice...
audio slice encoded in 87 ms
decoding audio batch 1/1, n_tokens_batch = 26
audio decoded (batch 1/1) in 7 ms

What's your name?

llama_perf_context_print: load time = 28150.55 ms
llama_perf_context_print: prompt eval time = 131.94 ms / 45 tokens ( 2.93 ms per token, 341.05 tokens per second)
llama_perf_context_print: eval time = 82.69 ms / 5 runs ( 16.54 ms per token, 60.47 tokens per second)
llama_perf_context_print: total time = 220.23 ms / 50 tokens
llama_perf_context_print: graphs reused = 4
audio samples per second: nan
text tokens per second: 73.5
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
add_text: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
I don't have a specific name; I'm an AI assistant here to help you. How can I assist you today?<|im_end|>
<|im_start|>assistant

llama_perf_context_print: load time = 28150.55 ms
llama_perf_context_print: prompt eval time = 21.55 ms / 50 tokens ( 0.43 ms per token, 2320.08 tokens per second)
llama_perf_context_print: eval time = 1144.93 ms / 73 runs ( 15.68 ms per token, 63.76 tokens per second)
llama_perf_context_print: total time = 2647.18 ms / 123 tokens
llama_perf_context_print: graphs reused = 70
audio samples per second: 53883.4
text tokens per second: nan
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
add_text: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user

audio_tokens->n_tokens = 36
add_text: <|im_end|>
<|im_start|>assistant

encoding audio slice...
audio slice encoded in 36 ms
decoding audio batch 1/1, n_tokens_batch = 36
audio decoded (batch 1/1) in 4 ms

Please tell me a joke.

llama_perf_context_print: load time = 28150.55 ms
llama_perf_context_print: prompt eval time = 72.78 ms / 55 tokens ( 1.32 ms per token, 755.69 tokens per second)
llama_perf_context_print: eval time = 97.73 ms / 6 runs ( 16.29 ms per token, 61.39 tokens per second)
llama_perf_context_print: total time = 176.17 ms / 61 tokens
llama_perf_context_print: graphs reused = 5
audio samples per second: nan
text tokens per second: 73.2
terminate called after throwing an instance of 'std::system_error'
what(): Resource deadlock avoided
Aborted

@tdakhran tdakhran force-pushed the tarek/feat/os-lfm2.5-audio-1.5b-upstream branch from c872bec to d64c8d4 Compare January 21, 2026 10:52
@tdakhran
Copy link
Contributor Author

@ngxson, I tried porting the changes from llama-liquid-audio-server to llama-server for outputting audio, and also added related interfaces to mtmd.h. Please take a look and share feedback.

@elfarolab
Copy link

@tdakhran

Building again this PR, cleaned ccache, repo dir includes the last commits of today.

On Jetson AGX Orin:

nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Wed_Aug_14_10:14:07_PDT_2024
Cuda compilation tools, release 12.6, V12.6.68
Build cuda_12.6.r12.6/compiler.34714021_0

Build options:

Some are obvious, some are not used during this building, it is because I am using an universal and automatic configurable building script:

CMAKE_BUILD_TYPE=Release
CMAKE_INSTALL_PREFIX=$LLAMACPP_PREFIX_DIR
CMAKE_CUDA_COMPILER=/usr/local/cuda-12.6/bin/nvcc
CMAKE_CUDA_ARCHITECTURES=87
GGML_CUDA=ON
GGML_CUDA_FA=ON
GGML_CUDA_GRAPHS=ON
GGML_CUDA_FORCE_CUBLAS=ON
GGML_BLAS=ON
GGML_BLAS_VENDOR=OpenBLAS
BLAS_LIBRARIES="$OPENBLAS_LIB"
GGML_BLAS_USE_OPENBLAS=ON
GGML_CUDA_USE_MMQ=OFF
GGML_CUDA_FA_ALL_QUANTS=ON
GGML_ACCELERATE=OFF
GGML_METAL=OFF
GGML_OPENCL=OFF
GGML_SYCL=OFF
GGML_HEXAGON=OFF
GGML_HIP=OFF
GGML_WEBGPU=OFF
GGML_VULKAN=OFF
GGML_LTO=ON
BUILD_SHARED_LIBS=OFF
GGML_STATIC=ON
GGML_CUDA_F16=ON
GGML_CUDA_BF16=ON
BLA_STATIC=ON
LLAMA_BUILD_COMMON=ON
LLAMA_BUILD_EXAMPLES=ON
LLAMA_BUILD_TESTS=OFF
LLAMA_BUILD_TOOLS=ON
LLAMA_BUILD_SERVER=ON
LLAMA_OPENSSL=OFF
LLAMA_CURL=OFF
GGML_CUDA_JETSON_DEVICE=ON
GGML_CUDA_ENABLE_UNIFIED_MEMORY=ON
LLAMA_TOOLS_INSTALL=ON
GGML_BACKEND_DL=OFF
GGML_CPU_ALL_VARIANTS=OFF
GGML_CUDA_NO_VMM=ON

The building error:

...

In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:9:
/opt/usbhd/SRC/llama.cpp-pr-18641/common/./log.h:109: warning: "LOG_DBG" redefined
  109 | #define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG,  __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-model.h:5,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./mtmd-audio.h:4,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:2:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-impl.h:347: note: this is the location of the previous definition
  347 | #define LOG_DBG(...) clip_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:9:
/opt/usbhd/SRC/llama.cpp-pr-18641/common/./log.h:110: warning: "LOG_INF" redefined
  110 | #define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO,  LOG_LEVEL_INFO,   __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-model.h:5,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./mtmd-audio.h:4,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:2:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-impl.h:344: note: this is the location of the previous definition
  344 | #define LOG_INF(...) clip_log_internal(GGML_LOG_LEVEL_INFO,  __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:9:
/opt/usbhd/SRC/llama.cpp-pr-18641/common/./log.h:111: warning: "LOG_WRN" redefined
  111 | #define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN,  LOG_LEVEL_WARN,   __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-model.h:5,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./mtmd-audio.h:4,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:2:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-impl.h:345: note: this is the location of the previous definition
  345 | #define LOG_WRN(...) clip_log_internal(GGML_LOG_LEVEL_WARN,  __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:9:
/opt/usbhd/SRC/llama.cpp-pr-18641/common/./log.h:112: warning: "LOG_ERR" redefined
  112 | #define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR,  __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-model.h:5,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./mtmd-audio.h:4,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:2:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-impl.h:346: note: this is the location of the previous definition
  346 | #define LOG_ERR(...) clip_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:9:
/opt/usbhd/SRC/llama.cpp-pr-18641/common/./log.h:113: warning: "LOG_CNT" redefined
  113 | #define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT,  LOG_LEVEL_INFO,   __VA_ARGS__) // same as INFO
      |
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-model.h:5,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./mtmd-audio.h:4,
                 from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.cpp:2:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/./clip-impl.h:348: note: this is the location of the previous definition
  348 | #define LOG_CNT(...) clip_log_internal(GGML_LOG_LEVEL_CONT,  __VA_ARGS__)
      |
[467/481] : && /usr/bin/cmake -E rm -f tools/liquid-audio/libliquid-audio.a && /usr/bin/ar qc tools/liquid-audio/libliquid-audio.a  tools/liquid-audio/CMakeFiles/liquid-audio.dir/runner.cpp.o && /usr/bin/ranlib tools/liquid-audio/libliquid-audio.a && :
[468/481] ccache /usr/bin/c++ -DGGML_USE_BLAS -DGGML_USE_CPU -DGGML_USE_CUDA -DLLAMA_USE_HTTPLIB -I/opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio -I/opt/usbhd/SRC/llama.cpp-pr-18641/src/../include -I/opt/usbhd/SRC/llama.cpp-pr-18641/ggml/src/../include -I/opt/usbhd/SRC/llama.cpp-pr-18641/common/. -I/opt/usbhd/SRC/llama.cpp-pr-18641/common/../vendor -I/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/. -O3 -DNDEBUG -Wmissing-declarations -Wmissing-noreturn -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-array-bounds -Wextra-semi -MD -MT tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o -MF tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o.d -o tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o -c /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/cli.cpp
FAILED: tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o
ccache /usr/bin/c++ -DGGML_USE_BLAS -DGGML_USE_CPU -DGGML_USE_CUDA -DLLAMA_USE_HTTPLIB -I/opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio -I/opt/usbhd/SRC/llama.cpp-pr-18641/src/../include -I/opt/usbhd/SRC/llama.cpp-pr-18641/ggml/src/../include -I/opt/usbhd/SRC/llama.cpp-pr-18641/common/. -I/opt/usbhd/SRC/llama.cpp-pr-18641/common/../vendor -I/opt/usbhd/SRC/llama.cpp-pr-18641/tools/mtmd/. -O3 -DNDEBUG -Wmissing-declarations -Wmissing-noreturn -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-array-bounds -Wextra-semi -MD -MT tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o -MF tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o.d -o tools/liquid-audio/CMakeFiles/llama-liquid-audio-cli.dir/cli.cpp.o -c /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/cli.cpp
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/cli.cpp: In function ‘int main(int, char**)’:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/cli.cpp:129:29: error: no matching function for call to ‘liquid::audio::Runner::generate(std::vector<liquid::audio::Runner::Message>&, int32_t&, main(int, char**)::<lambda(const string&)>&, main(int, char**)::<lambda(const std::vector<short int>&)>&)’
  129 |     if (0 != runner.generate(messages, params.n_predict, text_cb, audio_cb)) {
      |              ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/cli.cpp:3:
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.h:41:10: note: candidate: ‘int liquid::audio::Runner::generate(const std::vector<liquid::audio::Runner::Message>&, int, const text_callback_t&, const audio_callback_t&, const std::vector<mtmd_output_modality>&)’
   41 |     int  generate(const std::vector<Message> &              messages,
      |          ^~~~~~~~
/opt/usbhd/SRC/llama.cpp-pr-18641/tools/liquid-audio/runner.h:41:10: note:   candidate expects 5 arguments, 4 provided

...

ninja: build stopped: subcommand failed.

make: *** [Makefile:117: 18641] Error 1

If you need anything else to understand the error, I will stay available.
Thank you so much.

@tdakhran tdakhran force-pushed the tarek/feat/os-lfm2.5-audio-1.5b-upstream branch from 309960e to 9960b91 Compare January 21, 2026 17:16
@tdakhran
Copy link
Contributor Author

@elfarolab , thanks for reporting, cli shall work now.

@elfarolab
Copy link

@elfarolab , thanks for reporting, cli shall work now.

rebuilding..

@elfarolab
Copy link

@tdakhran

Built successfully.

./llama-liquid-audio-server --version
ggml_cuda_init: found 1 CUDA devices:
  Device 0: Orin, compute capability 8.7, VMM: no
version: 1 (9960b91e2)
built with GNU 11.4.0 for Linux aarch64

@elfarolab
Copy link

elfarolab commented Jan 21, 2026

@tdakhran

After a succesfull ASR, at the TTS turn, llama-liquid-audio-server is not sending audio chunks anymore.
Did anything change about the way of use it?
It was working fine before..

The server receive the text to convert in audio but then looks like stop working.

common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
mtmd_context: audio decoder initialized
Model loaded successfully!
Starting HTTP server on 127.0.0.1:8086
Server ready at http://127.0.0.1:8086
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
add_text: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user

audio_tokens->n_tokens = 28
add_text: <|im_end|>
<|im_start|>assistant

encoding audio slice...
audio slice encoded in 423 ms
decoding audio batch 1/1, n_tokens_batch = 28
audio decoded (batch 1/1) in 7 ms

The temperature of the lobby.

llama_perf_context_print:        load time =   26724.24 ms
llama_perf_context_print: prompt eval time =     556.06 ms /    47 tokens (   11.83 ms per token,    84.52 tokens per second)
llama_perf_context_print:        eval time =     110.80 ms /     6 runs   (   18.47 ms per token,    54.15 tokens per second)
llama_perf_context_print:       total time =     721.15 ms /    53 tokens
llama_perf_context_print:    graphs reused =          5
audio samples per second:        nan
text  tokens  per second:       62.5
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
add_text: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
The lobby temperature is currently unavailable.<|im_end|>
<|im_start|>assistant


<|audio_start|>

llama_perf_context_print:        load time =   26724.24 ms
llama_perf_context_print: prompt eval time =      20.13 ms /    32 tokens (    0.63 ms per token,  1589.98 tokens per second)
llama_perf_context_print:        eval time =     541.66 ms /    35 runs   (   15.48 ms per token,    64.62 tokens per second)
llama_perf_context_print:       total time =    1459.35 ms /    67 tokens
llama_perf_context_print:    graphs reused =         32
audio samples per second:    52707.5
text  tokens  per second:        inf

Command:

./llama-liquid-audio-server --port 8086 --no-direct-io --no-mmap -m /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/LFM2.5-Audio-1.5B-F16.gguf -mm /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/mmproj-LFM2.5-Audio-1.5B-F16.gguf -mv /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/vocoder-LFM2.5-Audio-1.5B-F16.gguf --tts-speaker-file /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-F16.gguf

@tdakhran
Copy link
Contributor Author

@elfarolab , the sequence below works for me, did you update the inference example scripts? they changed a bit

❯ build_cpu_release/bin/llama-liquid-audio-server -m /data/playground/checkpoints/LFM2.5-Audio-1.5B-GGUF/LFM2.5-Audio-1.5B-Q4_0.gguf -mm /data/playground/checkpoints/LFM2.5-Audio-1.5B-GGUF/mmproj-LFM2.5-Audio-1.5B-Q4_0.gguf -mv /data/playground/checkpoints/LFM2.5-Audio-1.5B-GGUF/vocoder-LFM2.5-Audio-1.5B-Q4_0.gguf --tts-speaker-file /data/playground/checkpoints/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-Q4_0.gguf &> /dev/null &

❯ uv run tools/liquid-audio/liquid_audio_example.py --mode asr --wav /data/git/lili/input_4s.wav
Loaded audio from /data/git/lili/input_4s.wav
Mode: ASR (Audio -> Text)
Can you tell me what are the colors on the flag of Kazakhstan?

--- Performance Metrics ---
TTFT :                        0.263         s
Text :       14  tokens at       64  tokens/s

Transcribed/Generated text: Can you tell me what are the colors on the flag of Kazakhstan?

❯ uv run tools/liquid-audio/liquid_audio_example.py --mode tts --text "Hi, how are you?"                                                                                                                                                                                                      Mode: TTS (Text -> Audio)
Input text: Hi, how are you?
<|audio_start|>

--- Performance Metrics ---
TTFT :                        0.095         s
Audio:    51360 samples at    62796 samples/s

Received 51360 audio samples
Saved audio to output.wav (sample rate: 24000)

Transcribed/Generated text: <|audio_start|>

@elfarolab
Copy link

elfarolab commented Jan 21, 2026

@tdakhran

I found the error, it was at my side.
Now it works but I still have the previous issue.
After a complete cycle of ASR+TTS, then, during any new ASR+TTS request, the liquid-server crashes.

Please tell me if you need any other information to debug this issue, I would like to help.
Probably, I am doing something in my C++ client code that crashes the server.

Command

/opt/usbhd/SRC/llama.cpp-pr-18641_buildir/bin/llama-liquid-audio-server \
    -v \
    --port 8086 \
    --no-direct-io \
    --no-mmap \
    -m /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/LFM2.5-Audio-1.5B-F16.gguf \
    -mm /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/mmproj-LFM2.5-Audio-1.5B-F16.gguf \
    -mv /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/vocoder-LFM2.5-Audio-1.5B-F16.gguf \
    --tts-speaker-file /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-F16.gguf

My code log output

[2026-01-21 21:50:23] [INFO] [LLM] Final response: Yes, I can help with math problems or concepts. What do you need assistance with?
[2026-01-21 21:50:23] [INFO] [WS] NEW FLOW: Sending TTS request for text: Yes, I can help with math problems or concepts. What do you need assistance with?
[2026-01-21 21:50:23] [DEBUG] Found backend 'voice' at 127.0.0.1:8086
[2026-01-21 21:50:23] [DEBUG] [WS] NEW FLOW: TTS request : {"messages":[{"role":"system","content":"Perform TTS. Use the US female voice."},{"role":"user","content":"Yes, I can help with math problems or concepts. What do you need assistance with?"}],"model":"","modalities":["audio"],"stream":true,"max_tokens":512}
[2026-01-21 21:50:23] [INFO] [BACKEND] Streaming mode - Connecting to 127.0.0.1:8086
[2026-01-21 21:50:23] [ERROR] [BACKEND] Connect failed: Connection refused
[2026-01-21 21:50:23] [WARN] [WS] NEW FLOW: No audio chunks received
[2026-01-21 21:50:23] [INFO] [WS] Client disconnected (code: 1000)
Long debug llama-liquid-audio-server output ``` clip_model_loader: tensor[80]: n_dims = 2, name = a.blk.1.attn_v.weight, tensor_size=524288, offset=239890432, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[81]: n_dims = 2, name = a.blk.1.pos_bias_u, tensor_size=2048, offset=240414720, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[82]: n_dims = 2, name = a.blk.1.pos_bias_v, tensor_size=2048, offset=240416768, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[83]: n_dims = 1, name = a.blk.10.conv_norm.weight, tensor_size=2048, offset=240418816, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[84]: n_dims = 1, name = a.blk.10.conv_norm.bias, tensor_size=2048, offset=240420864, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[85]: n_dims = 1, name = a.blk.10.conv_dw.bias, tensor_size=2048, offset=240422912, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[86]: n_dims = 2, name = a.blk.10.conv_dw.weight, tensor_size=18432, offset=240424960, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[87]: n_dims = 1, name = a.blk.10.conv_pw1.bias, tensor_size=4096, offset=240443392, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[88]: n_dims = 2, name = a.blk.10.conv_pw1.weight, tensor_size=2097152, offset=240447488, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[89]: n_dims = 1, name = a.blk.10.conv_pw2.bias, tensor_size=2048, offset=242544640, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[90]: n_dims = 2, name = a.blk.10.conv_pw2.weight, tensor_size=1048576, offset=242546688, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[91]: n_dims = 1, name = a.blk.10.ffn_up.bias, tensor_size=8192, offset=243595264, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[92]: n_dims = 2, name = a.blk.10.ffn_up.weight, tensor_size=2097152, offset=243603456, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[93]: n_dims = 1, name = a.blk.10.ffn_down.bias, tensor_size=2048, offset=245700608, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[94]: n_dims = 2, name = a.blk.10.ffn_down.weight, tensor_size=2097152, offset=245702656, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[95]: n_dims = 1, name = a.blk.10.ffn_up_1.bias, tensor_size=8192, offset=247799808, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[96]: n_dims = 2, name = a.blk.10.ffn_up_1.weight, tensor_size=2097152, offset=247808000, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[97]: n_dims = 1, name = a.blk.10.ffn_down_1.bias, tensor_size=2048, offset=249905152, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[98]: n_dims = 2, name = a.blk.10.ffn_down_1.weight, tensor_size=2097152, offset=249907200, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[99]: n_dims = 1, name = a.blk.10.norm_conv.bias, tensor_size=2048, offset=252004352, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[100]: n_dims = 1, name = a.blk.10.norm_conv.weight, tensor_size=2048, offset=252006400, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[101]: n_dims = 1, name = a.blk.10.ffn_norm.bias, tensor_size=2048, offset=252008448, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[102]: n_dims = 1, name = a.blk.10.ffn_norm.weight, tensor_size=2048, offset=252010496, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[103]: n_dims = 1, name = a.blk.10.ffn_norm_1.bias, tensor_size=2048, offset=252012544, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[104]: n_dims = 1, name = a.blk.10.ffn_norm_1.weight, tensor_size=2048, offset=252014592, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[105]: n_dims = 1, name = a.blk.10.ln2.bias, tensor_size=2048, offset=252016640, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[106]: n_dims = 1, name = a.blk.10.ln2.weight, tensor_size=2048, offset=252018688, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[107]: n_dims = 1, name = a.blk.10.ln1.bias, tensor_size=2048, offset=252020736, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[108]: n_dims = 1, name = a.blk.10.ln1.weight, tensor_size=2048, offset=252022784, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[109]: n_dims = 1, name = a.blk.10.attn_k.bias, tensor_size=2048, offset=252024832, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[110]: n_dims = 2, name = a.blk.10.attn_k.weight, tensor_size=524288, offset=252026880, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[111]: n_dims = 1, name = a.blk.10.attn_out.bias, tensor_size=2048, offset=252551168, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[112]: n_dims = 2, name = a.blk.10.attn_out.weight, tensor_size=524288, offset=252553216, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[113]: n_dims = 2, name = a.blk.10.linear_pos.weight, tensor_size=524288, offset=253077504, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[114]: n_dims = 1, name = a.blk.10.attn_q.bias, tensor_size=2048, offset=253601792, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[115]: n_dims = 2, name = a.blk.10.attn_q.weight, tensor_size=524288, offset=253603840, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[116]: n_dims = 1, name = a.blk.10.attn_v.bias, tensor_size=2048, offset=254128128, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[117]: n_dims = 2, name = a.blk.10.attn_v.weight, tensor_size=524288, offset=254130176, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[118]: n_dims = 2, name = a.blk.10.pos_bias_u, tensor_size=2048, offset=254654464, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[119]: n_dims = 2, name = a.blk.10.pos_bias_v, tensor_size=2048, offset=254656512, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[120]: n_dims = 1, name = a.blk.11.conv_norm.weight, tensor_size=2048, offset=254658560, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[121]: n_dims = 1, name = a.blk.11.conv_norm.bias, tensor_size=2048, offset=254660608, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[122]: n_dims = 1, name = a.blk.11.conv_dw.bias, tensor_size=2048, offset=254662656, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[123]: n_dims = 2, name = a.blk.11.conv_dw.weight, tensor_size=18432, offset=254664704, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[124]: n_dims = 1, name = a.blk.11.conv_pw1.bias, tensor_size=4096, offset=254683136, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[125]: n_dims = 2, name = a.blk.11.conv_pw1.weight, tensor_size=2097152, offset=254687232, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[126]: n_dims = 1, name = a.blk.11.conv_pw2.bias, tensor_size=2048, offset=256784384, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[127]: n_dims = 2, name = a.blk.11.conv_pw2.weight, tensor_size=1048576, offset=256786432, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[128]: n_dims = 1, name = a.blk.11.ffn_up.bias, tensor_size=8192, offset=257835008, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[129]: n_dims = 2, name = a.blk.11.ffn_up.weight, tensor_size=2097152, offset=257843200, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[130]: n_dims = 1, name = a.blk.11.ffn_down.bias, tensor_size=2048, offset=259940352, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[131]: n_dims = 2, name = a.blk.11.ffn_down.weight, tensor_size=2097152, offset=259942400, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[132]: n_dims = 1, name = a.blk.11.ffn_up_1.bias, tensor_size=8192, offset=262039552, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[133]: n_dims = 2, name = a.blk.11.ffn_up_1.weight, tensor_size=2097152, offset=262047744, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[134]: n_dims = 1, name = a.blk.11.ffn_down_1.bias, tensor_size=2048, offset=264144896, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[135]: n_dims = 2, name = a.blk.11.ffn_down_1.weight, tensor_size=2097152, offset=264146944, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[136]: n_dims = 1, name = a.blk.11.norm_conv.bias, tensor_size=2048, offset=266244096, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[137]: n_dims = 1, name = a.blk.11.norm_conv.weight, tensor_size=2048, offset=266246144, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[138]: n_dims = 1, name = a.blk.11.ffn_norm.bias, tensor_size=2048, offset=266248192, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[139]: n_dims = 1, name = a.blk.11.ffn_norm.weight, tensor_size=2048, offset=266250240, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[140]: n_dims = 1, name = a.blk.11.ffn_norm_1.bias, tensor_size=2048, offset=266252288, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[141]: n_dims = 1, name = a.blk.11.ffn_norm_1.weight, tensor_size=2048, offset=266254336, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[142]: n_dims = 1, name = a.blk.11.ln2.bias, tensor_size=2048, offset=266256384, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[143]: n_dims = 1, name = a.blk.11.ln2.weight, tensor_size=2048, offset=266258432, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[144]: n_dims = 1, name = a.blk.11.ln1.bias, tensor_size=2048, offset=266260480, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[145]: n_dims = 1, name = a.blk.11.ln1.weight, tensor_size=2048, offset=266262528, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[146]: n_dims = 1, name = a.blk.11.attn_k.bias, tensor_size=2048, offset=266264576, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[147]: n_dims = 2, name = a.blk.11.attn_k.weight, tensor_size=524288, offset=266266624, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[148]: n_dims = 1, name = a.blk.11.attn_out.bias, tensor_size=2048, offset=266790912, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[149]: n_dims = 2, name = a.blk.11.attn_out.weight, tensor_size=524288, offset=266792960, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[150]: n_dims = 2, name = a.blk.11.linear_pos.weight, tensor_size=524288, offset=267317248, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[151]: n_dims = 1, name = a.blk.11.attn_q.bias, tensor_size=2048, offset=267841536, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[152]: n_dims = 2, name = a.blk.11.attn_q.weight, tensor_size=524288, offset=267843584, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[153]: n_dims = 1, name = a.blk.11.attn_v.bias, tensor_size=2048, offset=268367872, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[154]: n_dims = 2, name = a.blk.11.attn_v.weight, tensor_size=524288, offset=268369920, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[155]: n_dims = 2, name = a.blk.11.pos_bias_u, tensor_size=2048, offset=268894208, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[156]: n_dims = 2, name = a.blk.11.pos_bias_v, tensor_size=2048, offset=268896256, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[157]: n_dims = 1, name = a.blk.12.conv_norm.weight, tensor_size=2048, offset=268898304, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[158]: n_dims = 1, name = a.blk.12.conv_norm.bias, tensor_size=2048, offset=268900352, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[159]: n_dims = 1, name = a.blk.12.conv_dw.bias, tensor_size=2048, offset=268902400, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[160]: n_dims = 2, name = a.blk.12.conv_dw.weight, tensor_size=18432, offset=268904448, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[161]: n_dims = 1, name = a.blk.12.conv_pw1.bias, tensor_size=4096, offset=268922880, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[162]: n_dims = 2, name = a.blk.12.conv_pw1.weight, tensor_size=2097152, offset=268926976, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[163]: n_dims = 1, name = a.blk.12.conv_pw2.bias, tensor_size=2048, offset=271024128, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[164]: n_dims = 2, name = a.blk.12.conv_pw2.weight, tensor_size=1048576, offset=271026176, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[165]: n_dims = 1, name = a.blk.12.ffn_up.bias, tensor_size=8192, offset=272074752, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[166]: n_dims = 2, name = a.blk.12.ffn_up.weight, tensor_size=2097152, offset=272082944, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[167]: n_dims = 1, name = a.blk.12.ffn_down.bias, tensor_size=2048, offset=274180096, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[168]: n_dims = 2, name = a.blk.12.ffn_down.weight, tensor_size=2097152, offset=274182144, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[169]: n_dims = 1, name = a.blk.12.ffn_up_1.bias, tensor_size=8192, offset=276279296, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[170]: n_dims = 2, name = a.blk.12.ffn_up_1.weight, tensor_size=2097152, offset=276287488, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[171]: n_dims = 1, name = a.blk.12.ffn_down_1.bias, tensor_size=2048, offset=278384640, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[172]: n_dims = 2, name = a.blk.12.ffn_down_1.weight, tensor_size=2097152, offset=278386688, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[173]: n_dims = 1, name = a.blk.12.norm_conv.bias, tensor_size=2048, offset=280483840, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[174]: n_dims = 1, name = a.blk.12.norm_conv.weight, tensor_size=2048, offset=280485888, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[175]: n_dims = 1, name = a.blk.12.ffn_norm.bias, tensor_size=2048, offset=280487936, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[176]: n_dims = 1, name = a.blk.12.ffn_norm.weight, tensor_size=2048, offset=280489984, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[177]: n_dims = 1, name = a.blk.12.ffn_norm_1.bias, tensor_size=2048, offset=280492032, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[178]: n_dims = 1, name = a.blk.12.ffn_norm_1.weight, tensor_size=2048, offset=280494080, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[179]: n_dims = 1, name = a.blk.12.ln2.bias, tensor_size=2048, offset=280496128, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[180]: n_dims = 1, name = a.blk.12.ln2.weight, tensor_size=2048, offset=280498176, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[181]: n_dims = 1, name = a.blk.12.ln1.bias, tensor_size=2048, offset=280500224, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[182]: n_dims = 1, name = a.blk.12.ln1.weight, tensor_size=2048, offset=280502272, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[183]: n_dims = 1, name = a.blk.12.attn_k.bias, tensor_size=2048, offset=280504320, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[184]: n_dims = 2, name = a.blk.12.attn_k.weight, tensor_size=524288, offset=280506368, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[185]: n_dims = 1, name = a.blk.12.attn_out.bias, tensor_size=2048, offset=281030656, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[186]: n_dims = 2, name = a.blk.12.attn_out.weight, tensor_size=524288, offset=281032704, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[187]: n_dims = 2, name = a.blk.12.linear_pos.weight, tensor_size=524288, offset=281556992, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[188]: n_dims = 1, name = a.blk.12.attn_q.bias, tensor_size=2048, offset=282081280, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[189]: n_dims = 2, name = a.blk.12.attn_q.weight, tensor_size=524288, offset=282083328, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[190]: n_dims = 1, name = a.blk.12.attn_v.bias, tensor_size=2048, offset=282607616, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[191]: n_dims = 2, name = a.blk.12.attn_v.weight, tensor_size=524288, offset=282609664, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[192]: n_dims = 2, name = a.blk.12.pos_bias_u, tensor_size=2048, offset=283133952, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[193]: n_dims = 2, name = a.blk.12.pos_bias_v, tensor_size=2048, offset=283136000, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[194]: n_dims = 1, name = a.blk.13.conv_norm.weight, tensor_size=2048, offset=283138048, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[195]: n_dims = 1, name = a.blk.13.conv_norm.bias, tensor_size=2048, offset=283140096, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[196]: n_dims = 1, name = a.blk.13.conv_dw.bias, tensor_size=2048, offset=283142144, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[197]: n_dims = 2, name = a.blk.13.conv_dw.weight, tensor_size=18432, offset=283144192, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[198]: n_dims = 1, name = a.blk.13.conv_pw1.bias, tensor_size=4096, offset=283162624, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[199]: n_dims = 2, name = a.blk.13.conv_pw1.weight, tensor_size=2097152, offset=283166720, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[200]: n_dims = 1, name = a.blk.13.conv_pw2.bias, tensor_size=2048, offset=285263872, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[201]: n_dims = 2, name = a.blk.13.conv_pw2.weight, tensor_size=1048576, offset=285265920, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[202]: n_dims = 1, name = a.blk.13.ffn_up.bias, tensor_size=8192, offset=286314496, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[203]: n_dims = 2, name = a.blk.13.ffn_up.weight, tensor_size=2097152, offset=286322688, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[204]: n_dims = 1, name = a.blk.13.ffn_down.bias, tensor_size=2048, offset=288419840, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[205]: n_dims = 2, name = a.blk.13.ffn_down.weight, tensor_size=2097152, offset=288421888, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[206]: n_dims = 1, name = a.blk.13.ffn_up_1.bias, tensor_size=8192, offset=290519040, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[207]: n_dims = 2, name = a.blk.13.ffn_up_1.weight, tensor_size=2097152, offset=290527232, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[208]: n_dims = 1, name = a.blk.13.ffn_down_1.bias, tensor_size=2048, offset=292624384, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[209]: n_dims = 2, name = a.blk.13.ffn_down_1.weight, tensor_size=2097152, offset=292626432, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[210]: n_dims = 1, name = a.blk.13.norm_conv.bias, tensor_size=2048, offset=294723584, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[211]: n_dims = 1, name = a.blk.13.norm_conv.weight, tensor_size=2048, offset=294725632, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[212]: n_dims = 1, name = a.blk.13.ffn_norm.bias, tensor_size=2048, offset=294727680, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[213]: n_dims = 1, name = a.blk.13.ffn_norm.weight, tensor_size=2048, offset=294729728, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[214]: n_dims = 1, name = a.blk.13.ffn_norm_1.bias, tensor_size=2048, offset=294731776, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[215]: n_dims = 1, name = a.blk.13.ffn_norm_1.weight, tensor_size=2048, offset=294733824, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[216]: n_dims = 1, name = a.blk.13.ln2.bias, tensor_size=2048, offset=294735872, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[217]: n_dims = 1, name = a.blk.13.ln2.weight, tensor_size=2048, offset=294737920, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[218]: n_dims = 1, name = a.blk.13.ln1.bias, tensor_size=2048, offset=294739968, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[219]: n_dims = 1, name = a.blk.13.ln1.weight, tensor_size=2048, offset=294742016, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[220]: n_dims = 1, name = a.blk.13.attn_k.bias, tensor_size=2048, offset=294744064, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[221]: n_dims = 2, name = a.blk.13.attn_k.weight, tensor_size=524288, offset=294746112, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[222]: n_dims = 1, name = a.blk.13.attn_out.bias, tensor_size=2048, offset=295270400, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[223]: n_dims = 2, name = a.blk.13.attn_out.weight, tensor_size=524288, offset=295272448, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[224]: n_dims = 2, name = a.blk.13.linear_pos.weight, tensor_size=524288, offset=295796736, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[225]: n_dims = 1, name = a.blk.13.attn_q.bias, tensor_size=2048, offset=296321024, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[226]: n_dims = 2, name = a.blk.13.attn_q.weight, tensor_size=524288, offset=296323072, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[227]: n_dims = 1, name = a.blk.13.attn_v.bias, tensor_size=2048, offset=296847360, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[228]: n_dims = 2, name = a.blk.13.attn_v.weight, tensor_size=524288, offset=296849408, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[229]: n_dims = 2, name = a.blk.13.pos_bias_u, tensor_size=2048, offset=297373696, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[230]: n_dims = 2, name = a.blk.13.pos_bias_v, tensor_size=2048, offset=297375744, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[231]: n_dims = 1, name = a.blk.14.conv_norm.weight, tensor_size=2048, offset=297377792, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[232]: n_dims = 1, name = a.blk.14.conv_norm.bias, tensor_size=2048, offset=297379840, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[233]: n_dims = 1, name = a.blk.14.conv_dw.bias, tensor_size=2048, offset=297381888, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[234]: n_dims = 2, name = a.blk.14.conv_dw.weight, tensor_size=18432, offset=297383936, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[235]: n_dims = 1, name = a.blk.14.conv_pw1.bias, tensor_size=4096, offset=297402368, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[236]: n_dims = 2, name = a.blk.14.conv_pw1.weight, tensor_size=2097152, offset=297406464, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[237]: n_dims = 1, name = a.blk.14.conv_pw2.bias, tensor_size=2048, offset=299503616, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[238]: n_dims = 2, name = a.blk.14.conv_pw2.weight, tensor_size=1048576, offset=299505664, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[239]: n_dims = 1, name = a.blk.14.ffn_up.bias, tensor_size=8192, offset=300554240, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[240]: n_dims = 2, name = a.blk.14.ffn_up.weight, tensor_size=2097152, offset=300562432, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[241]: n_dims = 1, name = a.blk.14.ffn_down.bias, tensor_size=2048, offset=302659584, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[242]: n_dims = 2, name = a.blk.14.ffn_down.weight, tensor_size=2097152, offset=302661632, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[243]: n_dims = 1, name = a.blk.14.ffn_up_1.bias, tensor_size=8192, offset=304758784, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[244]: n_dims = 2, name = a.blk.14.ffn_up_1.weight, tensor_size=2097152, offset=304766976, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[245]: n_dims = 1, name = a.blk.14.ffn_down_1.bias, tensor_size=2048, offset=306864128, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[246]: n_dims = 2, name = a.blk.14.ffn_down_1.weight, tensor_size=2097152, offset=306866176, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[247]: n_dims = 1, name = a.blk.14.norm_conv.bias, tensor_size=2048, offset=308963328, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[248]: n_dims = 1, name = a.blk.14.norm_conv.weight, tensor_size=2048, offset=308965376, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[249]: n_dims = 1, name = a.blk.14.ffn_norm.bias, tensor_size=2048, offset=308967424, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[250]: n_dims = 1, name = a.blk.14.ffn_norm.weight, tensor_size=2048, offset=308969472, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[251]: n_dims = 1, name = a.blk.14.ffn_norm_1.bias, tensor_size=2048, offset=308971520, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[252]: n_dims = 1, name = a.blk.14.ffn_norm_1.weight, tensor_size=2048, offset=308973568, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[253]: n_dims = 1, name = a.blk.14.ln2.bias, tensor_size=2048, offset=308975616, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[254]: n_dims = 1, name = a.blk.14.ln2.weight, tensor_size=2048, offset=308977664, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[255]: n_dims = 1, name = a.blk.14.ln1.bias, tensor_size=2048, offset=308979712, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[256]: n_dims = 1, name = a.blk.14.ln1.weight, tensor_size=2048, offset=308981760, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[257]: n_dims = 1, name = a.blk.14.attn_k.bias, tensor_size=2048, offset=308983808, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[258]: n_dims = 2, name = a.blk.14.attn_k.weight, tensor_size=524288, offset=308985856, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[259]: n_dims = 1, name = a.blk.14.attn_out.bias, tensor_size=2048, offset=309510144, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[260]: n_dims = 2, name = a.blk.14.attn_out.weight, tensor_size=524288, offset=309512192, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[261]: n_dims = 2, name = a.blk.14.linear_pos.weight, tensor_size=524288, offset=310036480, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[262]: n_dims = 1, name = a.blk.14.attn_q.bias, tensor_size=2048, offset=310560768, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[263]: n_dims = 2, name = a.blk.14.attn_q.weight, tensor_size=524288, offset=310562816, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[264]: n_dims = 1, name = a.blk.14.attn_v.bias, tensor_size=2048, offset=311087104, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[265]: n_dims = 2, name = a.blk.14.attn_v.weight, tensor_size=524288, offset=311089152, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[266]: n_dims = 2, name = a.blk.14.pos_bias_u, tensor_size=2048, offset=311613440, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[267]: n_dims = 2, name = a.blk.14.pos_bias_v, tensor_size=2048, offset=311615488, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[268]: n_dims = 1, name = a.blk.15.conv_norm.weight, tensor_size=2048, offset=311617536, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[269]: n_dims = 1, name = a.blk.15.conv_norm.bias, tensor_size=2048, offset=311619584, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[270]: n_dims = 1, name = a.blk.15.conv_dw.bias, tensor_size=2048, offset=311621632, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[271]: n_dims = 2, name = a.blk.15.conv_dw.weight, tensor_size=18432, offset=311623680, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[272]: n_dims = 1, name = a.blk.15.conv_pw1.bias, tensor_size=4096, offset=311642112, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[273]: n_dims = 2, name = a.blk.15.conv_pw1.weight, tensor_size=2097152, offset=311646208, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[274]: n_dims = 1, name = a.blk.15.conv_pw2.bias, tensor_size=2048, offset=313743360, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[275]: n_dims = 2, name = a.blk.15.conv_pw2.weight, tensor_size=1048576, offset=313745408, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[276]: n_dims = 1, name = a.blk.15.ffn_up.bias, tensor_size=8192, offset=314793984, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[277]: n_dims = 2, name = a.blk.15.ffn_up.weight, tensor_size=2097152, offset=314802176, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[278]: n_dims = 1, name = a.blk.15.ffn_down.bias, tensor_size=2048, offset=316899328, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[279]: n_dims = 2, name = a.blk.15.ffn_down.weight, tensor_size=2097152, offset=316901376, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[280]: n_dims = 1, name = a.blk.15.ffn_up_1.bias, tensor_size=8192, offset=318998528, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[281]: n_dims = 2, name = a.blk.15.ffn_up_1.weight, tensor_size=2097152, offset=319006720, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[282]: n_dims = 1, name = a.blk.15.ffn_down_1.bias, tensor_size=2048, offset=321103872, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[283]: n_dims = 2, name = a.blk.15.ffn_down_1.weight, tensor_size=2097152, offset=321105920, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[284]: n_dims = 1, name = a.blk.15.norm_conv.bias, tensor_size=2048, offset=323203072, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[285]: n_dims = 1, name = a.blk.15.norm_conv.weight, tensor_size=2048, offset=323205120, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[286]: n_dims = 1, name = a.blk.15.ffn_norm.bias, tensor_size=2048, offset=323207168, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[287]: n_dims = 1, name = a.blk.15.ffn_norm.weight, tensor_size=2048, offset=323209216, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[288]: n_dims = 1, name = a.blk.15.ffn_norm_1.bias, tensor_size=2048, offset=323211264, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[289]: n_dims = 1, name = a.blk.15.ffn_norm_1.weight, tensor_size=2048, offset=323213312, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[290]: n_dims = 1, name = a.blk.15.ln2.bias, tensor_size=2048, offset=323215360, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[291]: n_dims = 1, name = a.blk.15.ln2.weight, tensor_size=2048, offset=323217408, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[292]: n_dims = 1, name = a.blk.15.ln1.bias, tensor_size=2048, offset=323219456, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[293]: n_dims = 1, name = a.blk.15.ln1.weight, tensor_size=2048, offset=323221504, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[294]: n_dims = 1, name = a.blk.15.attn_k.bias, tensor_size=2048, offset=323223552, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[295]: n_dims = 2, name = a.blk.15.attn_k.weight, tensor_size=524288, offset=323225600, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[296]: n_dims = 1, name = a.blk.15.attn_out.bias, tensor_size=2048, offset=323749888, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[297]: n_dims = 2, name = a.blk.15.attn_out.weight, tensor_size=524288, offset=323751936, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[298]: n_dims = 2, name = a.blk.15.linear_pos.weight, tensor_size=524288, offset=324276224, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[299]: n_dims = 1, name = a.blk.15.attn_q.bias, tensor_size=2048, offset=324800512, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[300]: n_dims = 2, name = a.blk.15.attn_q.weight, tensor_size=524288, offset=324802560, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[301]: n_dims = 1, name = a.blk.15.attn_v.bias, tensor_size=2048, offset=325326848, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[302]: n_dims = 2, name = a.blk.15.attn_v.weight, tensor_size=524288, offset=325328896, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[303]: n_dims = 2, name = a.blk.15.pos_bias_u, tensor_size=2048, offset=325853184, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[304]: n_dims = 2, name = a.blk.15.pos_bias_v, tensor_size=2048, offset=325855232, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[305]: n_dims = 1, name = a.blk.16.conv_norm.weight, tensor_size=2048, offset=325857280, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[306]: n_dims = 1, name = a.blk.16.conv_norm.bias, tensor_size=2048, offset=325859328, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[307]: n_dims = 1, name = a.blk.16.conv_dw.bias, tensor_size=2048, offset=325861376, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[308]: n_dims = 2, name = a.blk.16.conv_dw.weight, tensor_size=18432, offset=325863424, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[309]: n_dims = 1, name = a.blk.16.conv_pw1.bias, tensor_size=4096, offset=325881856, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[310]: n_dims = 2, name = a.blk.16.conv_pw1.weight, tensor_size=2097152, offset=325885952, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[311]: n_dims = 1, name = a.blk.16.conv_pw2.bias, tensor_size=2048, offset=327983104, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[312]: n_dims = 2, name = a.blk.16.conv_pw2.weight, tensor_size=1048576, offset=327985152, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[313]: n_dims = 1, name = a.blk.16.ffn_up.bias, tensor_size=8192, offset=329033728, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[314]: n_dims = 2, name = a.blk.16.ffn_up.weight, tensor_size=2097152, offset=329041920, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[315]: n_dims = 1, name = a.blk.16.ffn_down.bias, tensor_size=2048, offset=331139072, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[316]: n_dims = 2, name = a.blk.16.ffn_down.weight, tensor_size=2097152, offset=331141120, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[317]: n_dims = 1, name = a.blk.16.ffn_up_1.bias, tensor_size=8192, offset=333238272, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[318]: n_dims = 2, name = a.blk.16.ffn_up_1.weight, tensor_size=2097152, offset=333246464, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[319]: n_dims = 1, name = a.blk.16.ffn_down_1.bias, tensor_size=2048, offset=335343616, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[320]: n_dims = 2, name = a.blk.16.ffn_down_1.weight, tensor_size=2097152, offset=335345664, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[321]: n_dims = 1, name = a.blk.16.norm_conv.bias, tensor_size=2048, offset=337442816, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[322]: n_dims = 1, name = a.blk.16.norm_conv.weight, tensor_size=2048, offset=337444864, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[323]: n_dims = 1, name = a.blk.16.ffn_norm.bias, tensor_size=2048, offset=337446912, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[324]: n_dims = 1, name = a.blk.16.ffn_norm.weight, tensor_size=2048, offset=337448960, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[325]: n_dims = 1, name = a.blk.16.ffn_norm_1.bias, tensor_size=2048, offset=337451008, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[326]: n_dims = 1, name = a.blk.16.ffn_norm_1.weight, tensor_size=2048, offset=337453056, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[327]: n_dims = 1, name = a.blk.16.ln2.bias, tensor_size=2048, offset=337455104, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[328]: n_dims = 1, name = a.blk.16.ln2.weight, tensor_size=2048, offset=337457152, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[329]: n_dims = 1, name = a.blk.16.ln1.bias, tensor_size=2048, offset=337459200, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[330]: n_dims = 1, name = a.blk.16.ln1.weight, tensor_size=2048, offset=337461248, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[331]: n_dims = 1, name = a.blk.16.attn_k.bias, tensor_size=2048, offset=337463296, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[332]: n_dims = 2, name = a.blk.16.attn_k.weight, tensor_size=524288, offset=337465344, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[333]: n_dims = 1, name = a.blk.16.attn_out.bias, tensor_size=2048, offset=337989632, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[334]: n_dims = 2, name = a.blk.16.attn_out.weight, tensor_size=524288, offset=337991680, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[335]: n_dims = 2, name = a.blk.16.linear_pos.weight, tensor_size=524288, offset=338515968, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[336]: n_dims = 1, name = a.blk.16.attn_q.bias, tensor_size=2048, offset=339040256, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[337]: n_dims = 2, name = a.blk.16.attn_q.weight, tensor_size=524288, offset=339042304, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[338]: n_dims = 1, name = a.blk.16.attn_v.bias, tensor_size=2048, offset=339566592, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[339]: n_dims = 2, name = a.blk.16.attn_v.weight, tensor_size=524288, offset=339568640, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[340]: n_dims = 2, name = a.blk.16.pos_bias_u, tensor_size=2048, offset=340092928, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[341]: n_dims = 2, name = a.blk.16.pos_bias_v, tensor_size=2048, offset=340094976, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[342]: n_dims = 1, name = a.blk.2.conv_norm.weight, tensor_size=2048, offset=340097024, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[343]: n_dims = 1, name = a.blk.2.conv_norm.bias, tensor_size=2048, offset=340099072, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[344]: n_dims = 1, name = a.blk.2.conv_dw.bias, tensor_size=2048, offset=340101120, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[345]: n_dims = 2, name = a.blk.2.conv_dw.weight, tensor_size=18432, offset=340103168, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[346]: n_dims = 1, name = a.blk.2.conv_pw1.bias, tensor_size=4096, offset=340121600, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[347]: n_dims = 2, name = a.blk.2.conv_pw1.weight, tensor_size=2097152, offset=340125696, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[348]: n_dims = 1, name = a.blk.2.conv_pw2.bias, tensor_size=2048, offset=342222848, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[349]: n_dims = 2, name = a.blk.2.conv_pw2.weight, tensor_size=1048576, offset=342224896, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[350]: n_dims = 1, name = a.blk.2.ffn_up.bias, tensor_size=8192, offset=343273472, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[351]: n_dims = 2, name = a.blk.2.ffn_up.weight, tensor_size=2097152, offset=343281664, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[352]: n_dims = 1, name = a.blk.2.ffn_down.bias, tensor_size=2048, offset=345378816, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[353]: n_dims = 2, name = a.blk.2.ffn_down.weight, tensor_size=2097152, offset=345380864, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[354]: n_dims = 1, name = a.blk.2.ffn_up_1.bias, tensor_size=8192, offset=347478016, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[355]: n_dims = 2, name = a.blk.2.ffn_up_1.weight, tensor_size=2097152, offset=347486208, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[356]: n_dims = 1, name = a.blk.2.ffn_down_1.bias, tensor_size=2048, offset=349583360, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[357]: n_dims = 2, name = a.blk.2.ffn_down_1.weight, tensor_size=2097152, offset=349585408, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[358]: n_dims = 1, name = a.blk.2.norm_conv.bias, tensor_size=2048, offset=351682560, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[359]: n_dims = 1, name = a.blk.2.norm_conv.weight, tensor_size=2048, offset=351684608, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[360]: n_dims = 1, name = a.blk.2.ffn_norm.bias, tensor_size=2048, offset=351686656, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[361]: n_dims = 1, name = a.blk.2.ffn_norm.weight, tensor_size=2048, offset=351688704, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[362]: n_dims = 1, name = a.blk.2.ffn_norm_1.bias, tensor_size=2048, offset=351690752, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[363]: n_dims = 1, name = a.blk.2.ffn_norm_1.weight, tensor_size=2048, offset=351692800, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[364]: n_dims = 1, name = a.blk.2.ln2.bias, tensor_size=2048, offset=351694848, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[365]: n_dims = 1, name = a.blk.2.ln2.weight, tensor_size=2048, offset=351696896, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[366]: n_dims = 1, name = a.blk.2.ln1.bias, tensor_size=2048, offset=351698944, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[367]: n_dims = 1, name = a.blk.2.ln1.weight, tensor_size=2048, offset=351700992, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[368]: n_dims = 1, name = a.blk.2.attn_k.bias, tensor_size=2048, offset=351703040, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[369]: n_dims = 2, name = a.blk.2.attn_k.weight, tensor_size=524288, offset=351705088, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[370]: n_dims = 1, name = a.blk.2.attn_out.bias, tensor_size=2048, offset=352229376, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[371]: n_dims = 2, name = a.blk.2.attn_out.weight, tensor_size=524288, offset=352231424, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[372]: n_dims = 2, name = a.blk.2.linear_pos.weight, tensor_size=524288, offset=352755712, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[373]: n_dims = 1, name = a.blk.2.attn_q.bias, tensor_size=2048, offset=353280000, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[374]: n_dims = 2, name = a.blk.2.attn_q.weight, tensor_size=524288, offset=353282048, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[375]: n_dims = 1, name = a.blk.2.attn_v.bias, tensor_size=2048, offset=353806336, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[376]: n_dims = 2, name = a.blk.2.attn_v.weight, tensor_size=524288, offset=353808384, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[377]: n_dims = 2, name = a.blk.2.pos_bias_u, tensor_size=2048, offset=354332672, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[378]: n_dims = 2, name = a.blk.2.pos_bias_v, tensor_size=2048, offset=354334720, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[379]: n_dims = 1, name = a.blk.3.conv_norm.weight, tensor_size=2048, offset=354336768, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[380]: n_dims = 1, name = a.blk.3.conv_norm.bias, tensor_size=2048, offset=354338816, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[381]: n_dims = 1, name = a.blk.3.conv_dw.bias, tensor_size=2048, offset=354340864, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[382]: n_dims = 2, name = a.blk.3.conv_dw.weight, tensor_size=18432, offset=354342912, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[383]: n_dims = 1, name = a.blk.3.conv_pw1.bias, tensor_size=4096, offset=354361344, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor[384]: n_dims = 2, name = a.blk.3.conv_pw1.weight, tensor_size=2097152, offset=354365440, shape:[512, 1024, 1, 1], type = f32 clip_model_loader: tensor[385]: n_dims = 1, name = a.blk.3.conv_pw2.bias, tensor_size=2048, offset=356462592, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[386]: n_dims = 2, name = a.blk.3.conv_pw2.weight, tensor_size=1048576, offset=356464640, shape:[512, 512, 1, 1], type = f32 clip_model_loader: tensor[387]: n_dims = 1, name = a.blk.3.ffn_up.bias, tensor_size=8192, offset=357513216, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[388]: n_dims = 2, name = a.blk.3.ffn_up.weight, tensor_size=2097152, offset=357521408, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[389]: n_dims = 1, name = a.blk.3.ffn_down.bias, tensor_size=2048, offset=359618560, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[390]: n_dims = 2, name = a.blk.3.ffn_down.weight, tensor_size=2097152, offset=359620608, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[391]: n_dims = 1, name = a.blk.3.ffn_up_1.bias, tensor_size=8192, offset=361717760, shape:[2048, 1, 1, 1], type = f32 clip_model_loader: tensor[392]: n_dims = 2, name = a.blk.3.ffn_up_1.weight, tensor_size=2097152, offset=361725952, shape:[512, 2048, 1, 1], type = f16 clip_model_loader: tensor[393]: n_dims = 1, name = a.blk.3.ffn_down_1.bias, tensor_size=2048, offset=363823104, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[394]: n_dims = 2, name = a.blk.3.ffn_down_1.weight, tensor_size=2097152, offset=363825152, shape:[2048, 512, 1, 1], type = f16 clip_model_loader: tensor[395]: n_dims = 1, name = a.blk.3.norm_conv.bias, tensor_size=2048, offset=365922304, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[396]: n_dims = 1, name = a.blk.3.norm_conv.weight, tensor_size=2048, offset=365924352, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[397]: n_dims = 1, name = a.blk.3.ffn_norm.bias, tensor_size=2048, offset=365926400, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[398]: n_dims = 1, name = a.blk.3.ffn_norm.weight, tensor_size=2048, offset=365928448, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[399]: n_dims = 1, name = a.blk.3.ffn_norm_1.bias, tensor_size=2048, offset=365930496, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[400]: n_dims = 1, name = a.blk.3.ffn_norm_1.weight, tensor_size=2048, offset=365932544, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[401]: n_dims = 1, name = a.blk.3.ln2.bias, tensor_size=2048, offset=365934592, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[402]: n_dims = 1, name = a.blk.3.ln2.weight, tensor_size=2048, offset=365936640, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[403]: n_dims = 1, name = a.blk.3.ln1.bias, tensor_size=2048, offset=365938688, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[404]: n_dims = 1, name = a.blk.3.ln1.weight, tensor_size=2048, offset=365940736, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[405]: n_dims = 1, name = a.blk.3.attn_k.bias, tensor_size=2048, offset=365942784, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[406]: n_dims = 2, name = a.blk.3.attn_k.weight, tensor_size=524288, offset=365944832, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[407]: n_dims = 1, name = a.blk.3.attn_out.bias, tensor_size=2048, offset=366469120, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[408]: n_dims = 2, name = a.blk.3.attn_out.weight, tensor_size=524288, offset=366471168, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[409]: n_dims = 2, name = a.blk.3.linear_pos.weight, tensor_size=524288, offset=366995456, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[410]: n_dims = 1, name = a.blk.3.attn_q.bias, tensor_size=2048, offset=367519744, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[411]: n_dims = 2, name = a.blk.3.attn_q.weight, tensor_size=524288, offset=367521792, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[412]: n_dims = 1, name = a.blk.3.attn_v.bias, tensor_size=2048, offset=368046080, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[413]: n_dims = 2, name = a.blk.3.attn_v.weight, tensor_size=524288, offset=368048128, shape:[512, 512, 1, 1], type = f16 clip_model_loader: tensor[414]: n_dims = 2, name = a.blk.3.pos_bias_u, tensor_size=2048, offset=368572416, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[415]: n_dims = 2, name = a.blk.3.pos_bias_v, tensor_size=2048, offset=368574464, shape:[64, 8, 1, 1], type = f32 clip_model_loader: tensor[416]: n_dims = 1, name = a.blk.4.conv_norm.weight, tensor_size=2048, offset=368576512, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[417]: n_dims = 1, name = a.blk.4.conv_norm.bias, tensor_size=2048, offset=368578560, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[418]: n_dims = 1, name = a.blk.4.conv_dw.bias, tensor_size=2048, offset=368580608, shape:[512, 1, 1, 1], type = f32 clip_model_loader: tensor[419]: n_dims = 2, name = a.blk.4.conv_dw.weight, tensor_size=18432, offset=368582656, shape:[9, 512, 1, 1], type = f32 clip_model_loader: tensor[420]: n_dims = 1, name = a.blk.4.conv_pw1.bias, tensor_size=4096, offset=368601088, shape:[1024, 1, 1, 1], type = f32 clip_model_loader: tensor

[421]: n_dims = 2, name = a.blk.4.conv_pw1.weight, tensor_size=2097152, offset=368605184, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[422]: n_dims = 1, name = a.blk.4.conv_pw2.bias, tensor_size=2048, offset=370702336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[423]: n_dims = 2, name = a.blk.4.conv_pw2.weight, tensor_size=1048576, offset=370704384, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[424]: n_dims = 1, name = a.blk.4.ffn_up.bias, tensor_size=8192, offset=371752960, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[425]: n_dims = 2, name = a.blk.4.ffn_up.weight, tensor_size=2097152, offset=371761152, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[426]: n_dims = 1, name = a.blk.4.ffn_down.bias, tensor_size=2048, offset=373858304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[427]: n_dims = 2, name = a.blk.4.ffn_down.weight, tensor_size=2097152, offset=373860352, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[428]: n_dims = 1, name = a.blk.4.ffn_up_1.bias, tensor_size=8192, offset=375957504, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[429]: n_dims = 2, name = a.blk.4.ffn_up_1.weight, tensor_size=2097152, offset=375965696, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[430]: n_dims = 1, name = a.blk.4.ffn_down_1.bias, tensor_size=2048, offset=378062848, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[431]: n_dims = 2, name = a.blk.4.ffn_down_1.weight, tensor_size=2097152, offset=378064896, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[432]: n_dims = 1, name = a.blk.4.norm_conv.bias, tensor_size=2048, offset=380162048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[433]: n_dims = 1, name = a.blk.4.norm_conv.weight, tensor_size=2048, offset=380164096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[434]: n_dims = 1, name = a.blk.4.ffn_norm.bias, tensor_size=2048, offset=380166144, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[435]: n_dims = 1, name = a.blk.4.ffn_norm.weight, tensor_size=2048, offset=380168192, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[436]: n_dims = 1, name = a.blk.4.ffn_norm_1.bias, tensor_size=2048, offset=380170240, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[437]: n_dims = 1, name = a.blk.4.ffn_norm_1.weight, tensor_size=2048, offset=380172288, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[438]: n_dims = 1, name = a.blk.4.ln2.bias, tensor_size=2048, offset=380174336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[439]: n_dims = 1, name = a.blk.4.ln2.weight, tensor_size=2048, offset=380176384, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[440]: n_dims = 1, name = a.blk.4.ln1.bias, tensor_size=2048, offset=380178432, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[441]: n_dims = 1, name = a.blk.4.ln1.weight, tensor_size=2048, offset=380180480, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[442]: n_dims = 1, name = a.blk.4.attn_k.bias, tensor_size=2048, offset=380182528, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[443]: n_dims = 2, name = a.blk.4.attn_k.weight, tensor_size=524288, offset=380184576, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[444]: n_dims = 1, name = a.blk.4.attn_out.bias, tensor_size=2048, offset=380708864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[445]: n_dims = 2, name = a.blk.4.attn_out.weight, tensor_size=524288, offset=380710912, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[446]: n_dims = 2, name = a.blk.4.linear_pos.weight, tensor_size=524288, offset=381235200, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[447]: n_dims = 1, name = a.blk.4.attn_q.bias, tensor_size=2048, offset=381759488, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[448]: n_dims = 2, name = a.blk.4.attn_q.weight, tensor_size=524288, offset=381761536, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[449]: n_dims = 1, name = a.blk.4.attn_v.bias, tensor_size=2048, offset=382285824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[450]: n_dims = 2, name = a.blk.4.attn_v.weight, tensor_size=524288, offset=382287872, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[451]: n_dims = 2, name = a.blk.4.pos_bias_u, tensor_size=2048, offset=382812160, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[452]: n_dims = 2, name = a.blk.4.pos_bias_v, tensor_size=2048, offset=382814208, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[453]: n_dims = 1, name = a.blk.5.conv_norm.weight, tensor_size=2048, offset=382816256, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[454]: n_dims = 1, name = a.blk.5.conv_norm.bias, tensor_size=2048, offset=382818304, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[455]: n_dims = 1, name = a.blk.5.conv_dw.bias, tensor_size=2048, offset=382820352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[456]: n_dims = 2, name = a.blk.5.conv_dw.weight, tensor_size=18432, offset=382822400, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[457]: n_dims = 1, name = a.blk.5.conv_pw1.bias, tensor_size=4096, offset=382840832, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[458]: n_dims = 2, name = a.blk.5.conv_pw1.weight, tensor_size=2097152, offset=382844928, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[459]: n_dims = 1, name = a.blk.5.conv_pw2.bias, tensor_size=2048, offset=384942080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[460]: n_dims = 2, name = a.blk.5.conv_pw2.weight, tensor_size=1048576, offset=384944128, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[461]: n_dims = 1, name = a.blk.5.ffn_up.bias, tensor_size=8192, offset=385992704, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[462]: n_dims = 2, name = a.blk.5.ffn_up.weight, tensor_size=2097152, offset=386000896, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[463]: n_dims = 1, name = a.blk.5.ffn_down.bias, tensor_size=2048, offset=388098048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[464]: n_dims = 2, name = a.blk.5.ffn_down.weight, tensor_size=2097152, offset=388100096, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[465]: n_dims = 1, name = a.blk.5.ffn_up_1.bias, tensor_size=8192, offset=390197248, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[466]: n_dims = 2, name = a.blk.5.ffn_up_1.weight, tensor_size=2097152, offset=390205440, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[467]: n_dims = 1, name = a.blk.5.ffn_down_1.bias, tensor_size=2048, offset=392302592, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[468]: n_dims = 2, name = a.blk.5.ffn_down_1.weight, tensor_size=2097152, offset=392304640, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[469]: n_dims = 1, name = a.blk.5.norm_conv.bias, tensor_size=2048, offset=394401792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[470]: n_dims = 1, name = a.blk.5.norm_conv.weight, tensor_size=2048, offset=394403840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[471]: n_dims = 1, name = a.blk.5.ffn_norm.bias, tensor_size=2048, offset=394405888, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[472]: n_dims = 1, name = a.blk.5.ffn_norm.weight, tensor_size=2048, offset=394407936, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[473]: n_dims = 1, name = a.blk.5.ffn_norm_1.bias, tensor_size=2048, offset=394409984, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[474]: n_dims = 1, name = a.blk.5.ffn_norm_1.weight, tensor_size=2048, offset=394412032, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[475]: n_dims = 1, name = a.blk.5.ln2.bias, tensor_size=2048, offset=394414080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[476]: n_dims = 1, name = a.blk.5.ln2.weight, tensor_size=2048, offset=394416128, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[477]: n_dims = 1, name = a.blk.5.ln1.bias, tensor_size=2048, offset=394418176, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[478]: n_dims = 1, name = a.blk.5.ln1.weight, tensor_size=2048, offset=394420224, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[479]: n_dims = 1, name = a.blk.5.attn_k.bias, tensor_size=2048, offset=394422272, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[480]: n_dims = 2, name = a.blk.5.attn_k.weight, tensor_size=524288, offset=394424320, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[481]: n_dims = 1, name = a.blk.5.attn_out.bias, tensor_size=2048, offset=394948608, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[482]: n_dims = 2, name = a.blk.5.attn_out.weight, tensor_size=524288, offset=394950656, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[483]: n_dims = 2, name = a.blk.5.linear_pos.weight, tensor_size=524288, offset=395474944, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[484]: n_dims = 1, name = a.blk.5.attn_q.bias, tensor_size=2048, offset=395999232, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[485]: n_dims = 2, name = a.blk.5.attn_q.weight, tensor_size=524288, offset=396001280, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[486]: n_dims = 1, name = a.blk.5.attn_v.bias, tensor_size=2048, offset=396525568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[487]: n_dims = 2, name = a.blk.5.attn_v.weight, tensor_size=524288, offset=396527616, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[488]: n_dims = 2, name = a.blk.5.pos_bias_u, tensor_size=2048, offset=397051904, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[489]: n_dims = 2, name = a.blk.5.pos_bias_v, tensor_size=2048, offset=397053952, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[490]: n_dims = 1, name = a.blk.6.conv_norm.weight, tensor_size=2048, offset=397056000, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[491]: n_dims = 1, name = a.blk.6.conv_norm.bias, tensor_size=2048, offset=397058048, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[492]: n_dims = 1, name = a.blk.6.conv_dw.bias, tensor_size=2048, offset=397060096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[493]: n_dims = 2, name = a.blk.6.conv_dw.weight, tensor_size=18432, offset=397062144, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[494]: n_dims = 1, name = a.blk.6.conv_pw1.bias, tensor_size=4096, offset=397080576, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[495]: n_dims = 2, name = a.blk.6.conv_pw1.weight, tensor_size=2097152, offset=397084672, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[496]: n_dims = 1, name = a.blk.6.conv_pw2.bias, tensor_size=2048, offset=399181824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[497]: n_dims = 2, name = a.blk.6.conv_pw2.weight, tensor_size=1048576, offset=399183872, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[498]: n_dims = 1, name = a.blk.6.ffn_up.bias, tensor_size=8192, offset=400232448, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[499]: n_dims = 2, name = a.blk.6.ffn_up.weight, tensor_size=2097152, offset=400240640, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[500]: n_dims = 1, name = a.blk.6.ffn_down.bias, tensor_size=2048, offset=402337792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[501]: n_dims = 2, name = a.blk.6.ffn_down.weight, tensor_size=2097152, offset=402339840, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[502]: n_dims = 1, name = a.blk.6.ffn_up_1.bias, tensor_size=8192, offset=404436992, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[503]: n_dims = 2, name = a.blk.6.ffn_up_1.weight, tensor_size=2097152, offset=404445184, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[504]: n_dims = 1, name = a.blk.6.ffn_down_1.bias, tensor_size=2048, offset=406542336, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[505]: n_dims = 2, name = a.blk.6.ffn_down_1.weight, tensor_size=2097152, offset=406544384, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[506]: n_dims = 1, name = a.blk.6.norm_conv.bias, tensor_size=2048, offset=408641536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[507]: n_dims = 1, name = a.blk.6.norm_conv.weight, tensor_size=2048, offset=408643584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[508]: n_dims = 1, name = a.blk.6.ffn_norm.bias, tensor_size=2048, offset=408645632, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[509]: n_dims = 1, name = a.blk.6.ffn_norm.weight, tensor_size=2048, offset=408647680, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[510]: n_dims = 1, name = a.blk.6.ffn_norm_1.bias, tensor_size=2048, offset=408649728, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[511]: n_dims = 1, name = a.blk.6.ffn_norm_1.weight, tensor_size=2048, offset=408651776, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[512]: n_dims = 1, name = a.blk.6.ln2.bias, tensor_size=2048, offset=408653824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[513]: n_dims = 1, name = a.blk.6.ln2.weight, tensor_size=2048, offset=408655872, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[514]: n_dims = 1, name = a.blk.6.ln1.bias, tensor_size=2048, offset=408657920, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[515]: n_dims = 1, name = a.blk.6.ln1.weight, tensor_size=2048, offset=408659968, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[516]: n_dims = 1, name = a.blk.6.attn_k.bias, tensor_size=2048, offset=408662016, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[517]: n_dims = 2, name = a.blk.6.attn_k.weight, tensor_size=524288, offset=408664064, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[518]: n_dims = 1, name = a.blk.6.attn_out.bias, tensor_size=2048, offset=409188352, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[519]: n_dims = 2, name = a.blk.6.attn_out.weight, tensor_size=524288, offset=409190400, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[520]: n_dims = 2, name = a.blk.6.linear_pos.weight, tensor_size=524288, offset=409714688, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[521]: n_dims = 1, name = a.blk.6.attn_q.bias, tensor_size=2048, offset=410238976, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[522]: n_dims = 2, name = a.blk.6.attn_q.weight, tensor_size=524288, offset=410241024, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[523]: n_dims = 1, name = a.blk.6.attn_v.bias, tensor_size=2048, offset=410765312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[524]: n_dims = 2, name = a.blk.6.attn_v.weight, tensor_size=524288, offset=410767360, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[525]: n_dims = 2, name = a.blk.6.pos_bias_u, tensor_size=2048, offset=411291648, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[526]: n_dims = 2, name = a.blk.6.pos_bias_v, tensor_size=2048, offset=411293696, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[527]: n_dims = 1, name = a.blk.7.conv_norm.weight, tensor_size=2048, offset=411295744, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[528]: n_dims = 1, name = a.blk.7.conv_norm.bias, tensor_size=2048, offset=411297792, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[529]: n_dims = 1, name = a.blk.7.conv_dw.bias, tensor_size=2048, offset=411299840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[530]: n_dims = 2, name = a.blk.7.conv_dw.weight, tensor_size=18432, offset=411301888, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[531]: n_dims = 1, name = a.blk.7.conv_pw1.bias, tensor_size=4096, offset=411320320, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[532]: n_dims = 2, name = a.blk.7.conv_pw1.weight, tensor_size=2097152, offset=411324416, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[533]: n_dims = 1, name = a.blk.7.conv_pw2.bias, tensor_size=2048, offset=413421568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[534]: n_dims = 2, name = a.blk.7.conv_pw2.weight, tensor_size=1048576, offset=413423616, shape:[512, 512, 1, 1], type = f32

clip_model_loader: tensor[535]: n_dims = 1, name = a.blk.7.ffn_up.bias, tensor_size=8192, offset=414472192, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[536]: n_dims = 2, name = a.blk.7.ffn_up.weight, tensor_size=2097152, offset=414480384, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[537]: n_dims = 1, name = a.blk.7.ffn_down.bias, tensor_size=2048, offset=416577536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[538]: n_dims = 2, name = a.blk.7.ffn_down.weight, tensor_size=2097152, offset=416579584, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[539]: n_dims = 1, name = a.blk.7.ffn_up_1.bias, tensor_size=8192, offset=418676736, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[540]: n_dims = 2, name = a.blk.7.ffn_up_1.weight, tensor_size=2097152, offset=418684928, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[541]: n_dims = 1, name = a.blk.7.ffn_down_1.bias, tensor_size=2048, offset=420782080, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[542]: n_dims = 2, name = a.blk.7.ffn_down_1.weight, tensor_size=2097152, offset=420784128, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[543]: n_dims = 1, name = a.blk.7.norm_conv.bias, tensor_size=2048, offset=422881280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[544]: n_dims = 1, name = a.blk.7.norm_conv.weight, tensor_size=2048, offset=422883328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[545]: n_dims = 1, name = a.blk.7.ffn_norm.bias, tensor_size=2048, offset=422885376, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[546]: n_dims = 1, name = a.blk.7.ffn_norm.weight, tensor_size=2048, offset=422887424, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[547]: n_dims = 1, name = a.blk.7.ffn_norm_1.bias, tensor_size=2048, offset=422889472, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[548]: n_dims = 1, name = a.blk.7.ffn_norm_1.weight, tensor_size=2048, offset=422891520, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[549]: n_dims = 1, name = a.blk.7.ln2.bias, tensor_size=2048, offset=422893568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[550]: n_dims = 1, name = a.blk.7.ln2.weight, tensor_size=2048, offset=422895616, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[551]: n_dims = 1, name = a.blk.7.ln1.bias, tensor_size=2048, offset=422897664, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[552]: n_dims = 1, name = a.blk.7.ln1.weight, tensor_size=2048, offset=422899712, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[553]: n_dims = 1, name = a.blk.7.attn_k.bias, tensor_size=2048, offset=422901760, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[554]: n_dims = 2, name = a.blk.7.attn_k.weight, tensor_size=524288, offset=422903808, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[555]: n_dims = 1, name = a.blk.7.attn_out.bias, tensor_size=2048, offset=423428096, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[556]: n_dims = 2, name = a.blk.7.attn_out.weight, tensor_size=524288, offset=423430144, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[557]: n_dims = 2, name = a.blk.7.linear_pos.weight, tensor_size=524288, offset=423954432, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[558]: n_dims = 1, name = a.blk.7.attn_q.bias, tensor_size=2048, offset=424478720, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[559]: n_dims = 2, name = a.blk.7.attn_q.weight, tensor_size=524288, offset=424480768, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[560]: n_dims = 1, name = a.blk.7.attn_v.bias, tensor_size=2048, offset=425005056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[561]: n_dims = 2, name = a.blk.7.attn_v.weight, tensor_size=524288, offset=425007104, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[562]: n_dims = 2, name = a.blk.7.pos_bias_u, tensor_size=2048, offset=425531392, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[563]: n_dims = 2, name = a.blk.7.pos_bias_v, tensor_size=2048, offset=425533440, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[564]: n_dims = 1, name = a.blk.8.conv_norm.weight, tensor_size=2048, offset=425535488, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[565]: n_dims = 1, name = a.blk.8.conv_norm.bias, tensor_size=2048, offset=425537536, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[566]: n_dims = 1, name = a.blk.8.conv_dw.bias, tensor_size=2048, offset=425539584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[567]: n_dims = 2, name = a.blk.8.conv_dw.weight, tensor_size=18432, offset=425541632, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[568]: n_dims = 1, name = a.blk.8.conv_pw1.bias, tensor_size=4096, offset=425560064, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[569]: n_dims = 2, name = a.blk.8.conv_pw1.weight, tensor_size=2097152, offset=425564160, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[570]: n_dims = 1, name = a.blk.8.conv_pw2.bias, tensor_size=2048, offset=427661312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[571]: n_dims = 2, name = a.blk.8.conv_pw2.weight, tensor_size=1048576, offset=427663360, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[572]: n_dims = 1, name = a.blk.8.ffn_up.bias, tensor_size=8192, offset=428711936, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[573]: n_dims = 2, name = a.blk.8.ffn_up.weight, tensor_size=2097152, offset=428720128, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[574]: n_dims = 1, name = a.blk.8.ffn_down.bias, tensor_size=2048, offset=430817280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[575]: n_dims = 2, name = a.blk.8.ffn_down.weight, tensor_size=2097152, offset=430819328, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[576]: n_dims = 1, name = a.blk.8.ffn_up_1.bias, tensor_size=8192, offset=432916480, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[577]: n_dims = 2, name = a.blk.8.ffn_up_1.weight, tensor_size=2097152, offset=432924672, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[578]: n_dims = 1, name = a.blk.8.ffn_down_1.bias, tensor_size=2048, offset=435021824, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[579]: n_dims = 2, name = a.blk.8.ffn_down_1.weight, tensor_size=2097152, offset=435023872, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[580]: n_dims = 1, name = a.blk.8.norm_conv.bias, tensor_size=2048, offset=437121024, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[581]: n_dims = 1, name = a.blk.8.norm_conv.weight, tensor_size=2048, offset=437123072, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[582]: n_dims = 1, name = a.blk.8.ffn_norm.bias, tensor_size=2048, offset=437125120, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[583]: n_dims = 1, name = a.blk.8.ffn_norm.weight, tensor_size=2048, offset=437127168, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[584]: n_dims = 1, name = a.blk.8.ffn_norm_1.bias, tensor_size=2048, offset=437129216, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[585]: n_dims = 1, name = a.blk.8.ffn_norm_1.weight, tensor_size=2048, offset=437131264, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[586]: n_dims = 1, name = a.blk.8.ln2.bias, tensor_size=2048, offset=437133312, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[587]: n_dims = 1, name = a.blk.8.ln2.weight, tensor_size=2048, offset=437135360, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[588]: n_dims = 1, name = a.blk.8.ln1.bias, tensor_size=2048, offset=437137408, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[589]: n_dims = 1, name = a.blk.8.ln1.weight, tensor_size=2048, offset=437139456, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[590]: n_dims = 1, name = a.blk.8.attn_k.bias, tensor_size=2048, offset=437141504, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[591]: n_dims = 2, name = a.blk.8.attn_k.weight, tensor_size=524288, offset=437143552, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[592]: n_dims = 1, name = a.blk.8.attn_out.bias, tensor_size=2048, offset=437667840, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[593]: n_dims = 2, name = a.blk.8.attn_out.weight, tensor_size=524288, offset=437669888, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[594]: n_dims = 2, name = a.blk.8.linear_pos.weight, tensor_size=524288, offset=438194176, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[595]: n_dims = 1, name = a.blk.8.attn_q.bias, tensor_size=2048, offset=438718464, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[596]: n_dims = 2, name = a.blk.8.attn_q.weight, tensor_size=524288, offset=438720512, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[597]: n_dims = 1, name = a.blk.8.attn_v.bias, tensor_size=2048, offset=439244800, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[598]: n_dims = 2, name = a.blk.8.attn_v.weight, tensor_size=524288, offset=439246848, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[599]: n_dims = 2, name = a.blk.8.pos_bias_u, tensor_size=2048, offset=439771136, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[600]: n_dims = 2, name = a.blk.8.pos_bias_v, tensor_size=2048, offset=439773184, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[601]: n_dims = 1, name = a.blk.9.conv_norm.weight, tensor_size=2048, offset=439775232, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[602]: n_dims = 1, name = a.blk.9.conv_norm.bias, tensor_size=2048, offset=439777280, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[603]: n_dims = 1, name = a.blk.9.conv_dw.bias, tensor_size=2048, offset=439779328, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[604]: n_dims = 2, name = a.blk.9.conv_dw.weight, tensor_size=18432, offset=439781376, shape:[9, 512, 1, 1], type = f32
clip_model_loader: tensor[605]: n_dims = 1, name = a.blk.9.conv_pw1.bias, tensor_size=4096, offset=439799808, shape:[1024, 1, 1, 1], type = f32
clip_model_loader: tensor[606]: n_dims = 2, name = a.blk.9.conv_pw1.weight, tensor_size=2097152, offset=439803904, shape:[512, 1024, 1, 1], type = f32
clip_model_loader: tensor[607]: n_dims = 1, name = a.blk.9.conv_pw2.bias, tensor_size=2048, offset=441901056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[608]: n_dims = 2, name = a.blk.9.conv_pw2.weight, tensor_size=1048576, offset=441903104, shape:[512, 512, 1, 1], type = f32
clip_model_loader: tensor[609]: n_dims = 1, name = a.blk.9.ffn_up.bias, tensor_size=8192, offset=442951680, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[610]: n_dims = 2, name = a.blk.9.ffn_up.weight, tensor_size=2097152, offset=442959872, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[611]: n_dims = 1, name = a.blk.9.ffn_down.bias, tensor_size=2048, offset=445057024, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[612]: n_dims = 2, name = a.blk.9.ffn_down.weight, tensor_size=2097152, offset=445059072, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[613]: n_dims = 1, name = a.blk.9.ffn_up_1.bias, tensor_size=8192, offset=447156224, shape:[2048, 1, 1, 1], type = f32
clip_model_loader: tensor[614]: n_dims = 2, name = a.blk.9.ffn_up_1.weight, tensor_size=2097152, offset=447164416, shape:[512, 2048, 1, 1], type = f16
clip_model_loader: tensor[615]: n_dims = 1, name = a.blk.9.ffn_down_1.bias, tensor_size=2048, offset=449261568, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[616]: n_dims = 2, name = a.blk.9.ffn_down_1.weight, tensor_size=2097152, offset=449263616, shape:[2048, 512, 1, 1], type = f16
clip_model_loader: tensor[617]: n_dims = 1, name = a.blk.9.norm_conv.bias, tensor_size=2048, offset=451360768, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[618]: n_dims = 1, name = a.blk.9.norm_conv.weight, tensor_size=2048, offset=451362816, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[619]: n_dims = 1, name = a.blk.9.ffn_norm.bias, tensor_size=2048, offset=451364864, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[620]: n_dims = 1, name = a.blk.9.ffn_norm.weight, tensor_size=2048, offset=451366912, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[621]: n_dims = 1, name = a.blk.9.ffn_norm_1.bias, tensor_size=2048, offset=451368960, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[622]: n_dims = 1, name = a.blk.9.ffn_norm_1.weight, tensor_size=2048, offset=451371008, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[623]: n_dims = 1, name = a.blk.9.ln2.bias, tensor_size=2048, offset=451373056, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[624]: n_dims = 1, name = a.blk.9.ln2.weight, tensor_size=2048, offset=451375104, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[625]: n_dims = 1, name = a.blk.9.ln1.bias, tensor_size=2048, offset=451377152, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[626]: n_dims = 1, name = a.blk.9.ln1.weight, tensor_size=2048, offset=451379200, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[627]: n_dims = 1, name = a.blk.9.attn_k.bias, tensor_size=2048, offset=451381248, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[628]: n_dims = 2, name = a.blk.9.attn_k.weight, tensor_size=524288, offset=451383296, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[629]: n_dims = 1, name = a.blk.9.attn_out.bias, tensor_size=2048, offset=451907584, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[630]: n_dims = 2, name = a.blk.9.attn_out.weight, tensor_size=524288, offset=451909632, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[631]: n_dims = 2, name = a.blk.9.linear_pos.weight, tensor_size=524288, offset=452433920, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[632]: n_dims = 1, name = a.blk.9.attn_q.bias, tensor_size=2048, offset=452958208, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[633]: n_dims = 2, name = a.blk.9.attn_q.weight, tensor_size=524288, offset=452960256, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[634]: n_dims = 1, name = a.blk.9.attn_v.bias, tensor_size=2048, offset=453484544, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[635]: n_dims = 2, name = a.blk.9.attn_v.weight, tensor_size=524288, offset=453486592, shape:[512, 512, 1, 1], type = f16
clip_model_loader: tensor[636]: n_dims = 2, name = a.blk.9.pos_bias_u, tensor_size=2048, offset=454010880, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[637]: n_dims = 2, name = a.blk.9.pos_bias_v, tensor_size=2048, offset=454012928, shape:[64, 8, 1, 1], type = f32
clip_model_loader: tensor[638]: n_dims = 3, name = a.conv1d.0.bias, tensor_size=1024, offset=454014976, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[639]: n_dims = 4, name = a.conv1d.0.weight, tensor_size=9216, offset=454016000, shape:[3, 3, 1, 256], type = f32
clip_model_loader: tensor[640]: n_dims = 3, name = a.conv1d.2.bias, tensor_size=1024, offset=454025216, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[641]: n_dims = 4, name = a.conv1d.2.weight, tensor_size=9216, offset=454026240, shape:[3, 3, 1, 256], type = f32
clip_model_loader: tensor[642]: n_dims = 3, name = a.conv1d.3.bias, tensor_size=1024, offset=454035456, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[643]: n_dims = 4, name = a.conv1d.3.weight, tensor_size=262144, offset=454036480, shape:[1, 1, 256, 256], type = f32
clip_model_loader: tensor[644]: n_dims = 3, name = a.conv1d.5.bias, tensor_size=1024, offset=454298624, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[645]: n_dims = 4, name = a.conv1d.5.weight, tensor_size=9216, offset=454299648, shape:[3, 3, 1, 256], type = f32
clip_model_loader: tensor[646]: n_dims = 3, name = a.conv1d.6.bias, tensor_size=1024, offset=454308864, shape:[1, 1, 256, 1], type = f32
clip_model_loader: tensor[647]: n_dims = 4, name = a.conv1d.6.weight, tensor_size=262144, offset=454309888, shape:[1, 1, 256, 256], type = f32
clip_model_loader: tensor[648]: n_dims = 1, name = a.pre_encode.out.bias, tensor_size=2048, offset=454572032, shape:[512, 1, 1, 1], type = f32
clip_model_loader: tensor[649]: n_dims = 2, name = a.pre_encode.out.weight, tensor_size=4194304, offset=454574080, shape:[4096, 512, 1, 1], type = f16
clip_ctx: CLIP using CUDA0 backend
load_hparams: projector: lfm2a
load_hparams: n_embd: 512
load_hparams: n_head: 8
load_hparams: n_ff: 512
load_hparams: n_layer: 17
load_hparams: ffn_op: gelu_quick
load_hparams: projection_dim: 2048

--- audio hparams ---
load_hparams: n_mel_bins: 128
load_hparams: proj_stack_factor: 0
load_hparams: audio_chunk_len: 1
load_hparams: audio_sample_rate: 16000
load_hparams: audio_n_fft: 512
load_hparams: audio_window_len: 400
load_hparams: audio_hop_len: 160

load_hparams: model size: 437.52 MiB
load_hparams: metadata size: 0.23 MiB
load_tensors: loaded 648 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/mmproj-LFM2.5-Audio-1.5B-F16.gguf
warmup: warmup with audio size = 3000
alloc_compute_meta: CUDA0 compute buffer size = 195.19 MiB
alloc_compute_meta: CPU compute buffer size = 2.93 MiB
alloc_compute_meta: graph splits = 35, nodes = 1547
warmup: flash attention is enabled
warmup: *****************************************************************
warmup: WARNING: the CLIP graph uses unsupported operators by the backend
warmup: the performance will be suboptimal
warmup: list of unsupported ops (backend=CUDA0):
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: UNARY: type = f32, ne = [512 375 1 1]
warmup: flash attention is enabled
warmup: please report this on github as an issue
warmup: ref: #16837 (comment)
warmup: *****************************************************************
init_audio: audio input is in experimental stage and may have reduced quality:
#13759
audio_decoder_ggml_ctx: using CUDA0 backend
audio_decoder_ggml_ctx: using GPU+CPU backend
load_gguf: Loaded 85 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/vocoder-LFM2.5-Audio-1.5B-F16.gguf
common_init_result: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on
llama_params_fit_impl: getting device memory data for initial parameters:
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6119504
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6119504
llama_model_load_from_file_impl: using device CUDA0 (Orin) (0000:00:00.0) - 5976 MiB free
llama_model_loader: loaded meta data with 29 key-value pairs and 77 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-F16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = lfm2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Audio_Detokenizer
llama_model_loader: - kv 3: general.size_label str = 70M
llama_model_loader: - kv 4: lfm2.block_count u32 = 8
llama_model_loader: - kv 5: lfm2.context_length u32 = 128000
llama_model_loader: - kv 6: lfm2.embedding_length u32 = 512
llama_model_loader: - kv 7: lfm2.feed_forward_length u32 = 2304
llama_model_loader: - kv 8: lfm2.attention.head_count u32 = 16
llama_model_loader: - kv 9: lfm2.attention.head_count_kv arr[i32,8] = [0, 0, 8, 0, 8, 0, 8, 0]
llama_model_loader: - kv 10: lfm2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: lfm2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: general.file_type u32 = 1
llama_model_loader: - kv 13: lfm2.vocab_size u32 = 65536
llama_model_loader: - kv 14: lfm2.shortconv.l_cache u32 = 3
llama_model_loader: - kv 15: lfm2.attention.sliding_window u32 = 30
llama_model_loader: - kv 16: lfm2.embedding_length_out u32 = 1282
llama_model_loader: - kv 17: general.quantization_version u32 = 2
llama_model_loader: - kv 18: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 19: tokenizer.ggml.pre str = lfm2
llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end...
llama_model_loader: - kv 21: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 22: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �...
llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 7
llama_model_loader: - kv 25: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 26: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 27: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - type f32: 29 tensors
llama_model_loader: - type f16: 48 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = F16
print_info: file size = 133.82 MiB (16.00 BPW)
init_tokenizer: initializing tokenizer for type 2
load: 0 unused tokens
load: control token: 64398 '<|file_start|>' is not marked as EOG
load: control token: 64396 '<|review_start|>' is not marked as EOG
load: control token: 64395 '<|cot_end|>' is not marked as EOG
load: control token: 64397 '<|review_end|>' is not marked as EOG
load: control token: 359 '<|reserved_349|>' is not marked as EOG
load: control token: 158 '<|reserved_148|>' is not marked as EOG
load: control token: 363 '<|reserved_353|>' is not marked as EOG
load: control token: 178 '<|reserved_168|>' is not marked as EOG
load: control token: 121 '<|reserved_111|>' is not marked as EOG
load: control token: 19 '<|reserved_9|>' is not marked as EOG
load: control token: 430 '<|reserved_420|>' is not marked as EOG
load: control token: 423 '<|reserved_413|>' is not marked as EOG
load: control token: 107 '<|reserved_97|>' is not marked as EOG
load: control token: 393 '<|reserved_383|>' is not marked as EOG
load: control token: 397 '<|reserved_387|>' is not marked as EOG
load: control token: 206 '<|reserved_196|>' is not marked as EOG
load: control token: 314 '<|reserved_304|>' is not marked as EOG
load: control token: 31 '<|reserved_21|>' is not marked as EOG
load: control token: 195 '<|reserved_185|>' is not marked as EOG
load: control token: 134 '<|reserved_124|>' is not marked as EOG
load: control token: 140 '<|reserved_130|>' is not marked as EOG
load: control token: 48 '<|reserved_38|>' is not marked as EOG
load: control token: 444 '<|reserved_434|>' is not marked as EOG
load: control token: 69 '<|reserved_59|>' is not marked as EOG
load: control token: 354 '<|reserved_344|>' is not marked as EOG
load: control token: 12 '<|tool_response_start|>' is not marked as EOG
load: control token: 37 '<|reserved_27|>' is not marked as EOG
load: control token: 398 '<|reserved_388|>' is not marked as EOG
load: control token: 241 '<|reserved_231|>' is not marked as EOG
load: control token: 390 '<|reserved_380|>' is not marked as EOG
load: control token: 220 '<|reserved_210|>' is not marked as EOG
load: control token: 177 '<|reserved_167|>' is not marked as EOG
load: control token: 415 '<|reserved_405|>' is not marked as EOG
load: control token: 381 '<|reserved_371|>' is not marked as EOG
load: control token: 99 '<|reserved_89|>' is not marked as EOG
load: control token: 11 '<|tool_call_end|>' is not marked as EOG
load: control token: 136 '<|reserved_126|>' is not marked as EOG
load: control token: 78 '<|reserved_68|>' is not marked as EOG
load: control token: 23 '<|reserved_13|>' is not marked as EOG
load: control token: 250 '<|reserved_240|>' is not marked as EOG
load: control token: 500 '<|reserved_490|>' is not marked as EOG
load: control token: 259 '<|reserved_249|>' is not marked as EOG
load: control token: 339 '<|reserved_329|>' is not marked as EOG
load: control token: 65 '<|reserved_55|>' is not marked as EOG
load: control token: 313 '<|reserved_303|>' is not marked as EOG
load: control token: 192 '<|reserved_182|>' is not marked as EOG
load: control token: 499 '<|reserved_489|>' is not marked as EOG
load: control token: 64399 '<|file_end|>' is not marked as EOG
load: control token: 170 '<|reserved_160|>' is not marked as EOG
load: control token: 388 '<|reserved_378|>' is not marked as EOG
load: control token: 358 '<|reserved_348|>' is not marked as EOG
load: control token: 49 '<|reserved_39|>' is not marked as EOG
load: control token: 173 '<|reserved_163|>' is not marked as EOG
load: control token: 472 '<|reserved_462|>' is not marked as EOG
load: control token: 219 '<|reserved_209|>' is not marked as EOG
load: control token: 137 '<|reserved_127|>' is not marked as EOG
load: control token: 124 '<|reserved_114|>' is not marked as EOG
load: control token: 196 '<|reserved_186|>' is not marked as EOG
load: control token: 253 '<|reserved_243|>' is not marked as EOG
load: control token: 112 '<|reserved_102|>' is not marked as EOG
load: control token: 100 '<|reserved_90|>' is not marked as EOG
load: control token: 342 '<|reserved_332|>' is not marked as EOG
load: control token: 26 '<|reserved_16|>' is not marked as EOG
load: control token: 460 '<|reserved_450|>' is not marked as EOG
load: control token: 437 '<|reserved_427|>' is not marked as EOG
load: control token: 186 '<|reserved_176|>' is not marked as EOG
load: control token: 244 '<|reserved_234|>' is not marked as EOG
load: control token: 281 '<|reserved_271|>' is not marked as EOG
load: control token: 273 '<|reserved_263|>' is not marked as EOG
load: control token: 257 '<|reserved_247|>' is not marked as EOG
load: control token: 256 '<|reserved_246|>' is not marked as EOG
load: control token: 182 '<|reserved_172|>' is not marked as EOG
load: control token: 492 '<|reserved_482|>' is not marked as EOG
load: control token: 153 '<|reserved_143|>' is not marked as EOG
load: control token: 455 '<|reserved_445|>' is not marked as EOG
load: control token: 249 '<|reserved_239|>' is not marked as EOG
load: control token: 226 '<|reserved_216|>' is not marked as EOG
load: control token: 461 '<|reserved_451|>' is not marked as EOG
load: control token: 302 '<|reserved_292|>' is not marked as EOG
load: control token: 442 '<|reserved_432|>' is not marked as EOG
load: control token: 10 '<|tool_call_start|>' is not marked as EOG
load: control token: 462 '<|reserved_452|>' is not marked as EOG
load: control token: 169 '<|reserved_159|>' is not marked as EOG
load: control token: 202 '<|reserved_192|>' is not marked as EOG
load: control token: 36 '<|reserved_26|>' is not marked as EOG
load: control token: 491 '<|reserved_481|>' is not marked as EOG
load: control token: 265 '<|reserved_255|>' is not marked as EOG
load: control token: 203 '<|reserved_193|>' is not marked as EOG
load: control token: 295 '<|reserved_285|>' is not marked as EOG
load: control token: 223 '<|reserved_213|>' is not marked as EOG
load: control token: 422 '<|reserved_412|>' is not marked as EOG
load: control token: 52 '<|reserved_42|>' is not marked as EOG
load: control token: 116 '<|reserved_106|>' is not marked as EOG
load: control token: 27 '<|reserved_17|>' is not marked as EOG
load: control token: 228 '<|reserved_218|>' is not marked as EOG
load: control token: 429 '<|reserved_419|>' is not marked as EOG
load: control token: 66 '<|reserved_56|>' is not marked as EOG
load: control token: 316 '<|reserved_306|>' is not marked as EOG
load: control token: 271 '<|reserved_261|>' is not marked as EOG
load: control token: 209 '<|reserved_199|>' is not marked as EOG
load: control token: 382 '<|reserved_372|>' is not marked as EOG
load: control token: 261 '<|reserved_251|>' is not marked as EOG
load: control token: 222 '<|reserved_212|>' is not marked as EOG
load: control token: 412 '<|reserved_402|>' is not marked as EOG
load: control token: 385 '<|reserved_375|>' is not marked as EOG
load: control token: 225 '<|reserved_215|>' is not marked as EOG
load: control token: 204 '<|reserved_194|>' is not marked as EOG
load: control token: 200 '<|reserved_190|>' is not marked as EOG
load: control token: 45 '<|reserved_35|>' is not marked as EOG
load: control token: 449 '<|reserved_439|>' is not marked as EOG
load: control token: 227 '<|reserved_217|>' is not marked as EOG
load: control token: 161 '<|reserved_151|>' is not marked as EOG
load: control token: 341 '<|reserved_331|>' is not marked as EOG
load: control token: 443 '<|reserved_433|>' is not marked as EOG
load: control token: 488 '<|reserved_478|>' is not marked as EOG
load: control token: 298 '<|reserved_288|>' is not marked as EOG
load: control token: 408 '<|reserved_398|>' is not marked as EOG
load: control token: 145 '<|reserved_135|>' is not marked as EOG
load: control token: 201 '<|reserved_191|>' is not marked as EOG
load: control token: 343 '<|reserved_333|>' is not marked as EOG
load: control token: 255 '<|reserved_245|>' is not marked as EOG
load: control token: 297 '<|reserved_287|>' is not marked as EOG
load: control token: 9 '<|tool_list_end|>' is not marked as EOG
load: control token: 123 '<|reserved_113|>' is not marked as EOG
load: control token: 340 '<|reserved_330|>' is not marked as EOG
load: control token: 487 '<|reserved_477|>' is not marked as EOG
load: control token: 42 '<|reserved_32|>' is not marked as EOG
load: control token: 3 '<|fim_pre|>' is not marked as EOG
load: control token: 468 '<|reserved_458|>' is not marked as EOG
load: control token: 29 '<|reserved_19|>' is not marked as EOG
load: control token: 175 '<|reserved_165|>' is not marked as EOG
load: control token: 451 '<|reserved_441|>' is not marked as EOG
load: control token: 446 '<|reserved_436|>' is not marked as EOG
load: control token: 416 '<|reserved_406|>' is not marked as EOG
load: control token: 240 '<|reserved_230|>' is not marked as EOG
load: control token: 387 '<|reserved_377|>' is not marked as EOG
load: control token: 111 '<|reserved_101|>' is not marked as EOG
load: control token: 73 '<|reserved_63|>' is not marked as EOG
load: control token: 426 '<|reserved_416|>' is not marked as EOG
load: control token: 8 '<|tool_list_start|>' is not marked as EOG
load: control token: 47 '<|reserved_37|>' is not marked as EOG
load: control token: 361 '<|reserved_351|>' is not marked as EOG
load: control token: 289 '<|reserved_279|>' is not marked as EOG
load: control token: 5 '<|fim_suf|>' is not marked as EOG
load: control token: 392 '<|reserved_382|>' is not marked as EOG
load: control token: 56 '<|reserved_46|>' is not marked as EOG
load: control token: 470 '<|reserved_460|>' is not marked as EOG
load: control token: 498 '<|reserved_488|>' is not marked as EOG
load: control token: 438 '<|reserved_428|>' is not marked as EOG
load: control token: 59 '<|reserved_49|>' is not marked as EOG
load: control token: 127 '<|reserved_117|>' is not marked as EOG
load: control token: 399 '<|reserved_389|>' is not marked as EOG
load: control token: 91 '<|reserved_81|>' is not marked as EOG
load: control token: 101 '<|reserved_91|>' is not marked as EOG
load: control token: 35 '<|reserved_25|>' is not marked as EOG
load: control token: 466 '<|reserved_456|>' is not marked as EOG
load: control token: 81 '<|reserved_71|>' is not marked as EOG
load: control token: 432 '<|reserved_422|>' is not marked as EOG
load: control token: 64394 '<|cot_start|>' is not marked as EOG
load: control token: 82 '<|reserved_72|>' is not marked as EOG
load: control token: 480 '<|reserved_470|>' is not marked as EOG
load: control token: 362 '<|reserved_352|>' is not marked as EOG
load: control token: 242 '<|reserved_232|>' is not marked as EOG
load: control token: 181 '<|reserved_171|>' is not marked as EOG
load: control token: 239 '<|reserved_229|>' is not marked as EOG
load: control token: 384 '<|reserved_374|>' is not marked as EOG
load: control token: 471 '<|reserved_461|>' is not marked as EOG
load: control token: 235 '<|reserved_225|>' is not marked as EOG
load: control token: 103 '<|reserved_93|>' is not marked as EOG
load: control token: 406 '<|reserved_396|>' is not marked as EOG
load: control token: 275 '<|reserved_265|>' is not marked as EOG
load: control token: 278 '<|reserved_268|>' is not marked as EOG
load: control token: 119 '<|reserved_109|>' is not marked as EOG
load: control token: 328 '<|reserved_318|>' is not marked as EOG
load: control token: 279 '<|reserved_269|>' is not marked as EOG
load: control token: 484 '<|reserved_474|>' is not marked as EOG
load: control token: 149 '<|reserved_139|>' is not marked as EOG
load: control token: 185 '<|reserved_175|>' is not marked as EOG
load: control token: 373 '<|reserved_363|>' is not marked as EOG
load: control token: 46 '<|reserved_36|>' is not marked as EOG
load: control token: 21 '<|reserved_11|>' is not marked as EOG
load: control token: 409 '<|reserved_399|>' is not marked as EOG
load: control token: 122 '<|reserved_112|>' is not marked as EOG
load: control token: 394 '<|reserved_384|>' is not marked as EOG
load: control token: 165 '<|reserved_155|>' is not marked as EOG
load: control token: 400 '<|reserved_390|>' is not marked as EOG
load: control token: 270 '<|reserved_260|>' is not marked as EOG
load: control token: 132 '<|reserved_122|>' is not marked as EOG
load: control token: 440 '<|reserved_430|>' is not marked as EOG
load: control token: 96 '<|reserved_86|>' is not marked as EOG
load: control token: 233 '<|reserved_223|>' is not marked as EOG
load: control token: 141 '<|reserved_131|>' is not marked as EOG
load: control token: 130 '<|reserved_120|>' is not marked as EOG
load: control token: 205 '<|reserved_195|>' is not marked as EOG
load: control token: 57 '<|reserved_47|>' is not marked as EOG
load: control token: 463 '<|reserved_453|>' is not marked as EOG
load: control token: 475 '<|reserved_465|>' is not marked as EOG
load: control token: 483 '<|reserved_473|>' is not marked as EOG
load: control token: 272 '<|reserved_262|>' is not marked as EOG
load: control token: 229 '<|reserved_219|>' is not marked as EOG
load: control token: 83 '<|reserved_73|>' is not marked as EOG
load: control token: 143 '<|reserved_133|>' is not marked as EOG
load: control token: 43 '<|reserved_33|>' is not marked as EOG
load: control token: 108 '<|reserved_98|>' is not marked as EOG
load: control token: 357 '<|reserved_347|>' is not marked as EOG
load: control token: 396 '<|reserved_386|>' is not marked as EOG
load: control token: 199 '<|reserved_189|>' is not marked as EOG
load: control token: 496 '<|reserved_486|>' is not marked as EOG
load: control token: 6 '<|im_start|>' is not marked as EOG
load: control token: 221 '<|reserved_211|>' is not marked as EOG
load: control token: 370 '<|reserved_360|>' is not marked as EOG
load: control token: 277 '<|reserved_267|>' is not marked as EOG
load: control token: 135 '<|reserved_125|>' is not marked as EOG
load: control token: 439 '<|reserved_429|>' is not marked as EOG
load: control token: 243 '<|reserved_233|>' is not marked as EOG
load: control token: 497 '<|reserved_487|>' is not marked as EOG
load: control token: 167 '<|reserved_157|>' is not marked as EOG
load: control token: 156 '<|reserved_146|>' is not marked as EOG
load: control token: 424 '<|reserved_414|>' is not marked as EOG
load: control token: 258 '<|reserved_248|>' is not marked as EOG
load: control token: 263 '<|reserved_253|>' is not marked as EOG
load: control token: 309 '<|reserved_299|>' is not marked as EOG
load: control token: 300 '<|reserved_290|>' is not marked as EOG
load: control token: 332 '<|reserved_322|>' is not marked as EOG
load: control token: 79 '<|reserved_69|>' is not marked as EOG
load: control token: 326 '<|reserved_316|>' is not marked as EOG
load: control token: 431 '<|reserved_421|>' is not marked as EOG
load: control token: 283 '<|reserved_273|>' is not marked as EOG
load: control token: 264 '<|reserved_254|>' is not marked as EOG
load: control token: 71 '<|reserved_61|>' is not marked as EOG
load: control token: 25 '<|reserved_15|>' is not marked as EOG
load: control token: 113 '<|reserved_103|>' is not marked as EOG
load: control token: 74 '<|reserved_64|>' is not marked as EOG
load: control token: 38 '<|reserved_28|>' is not marked as EOG
load: control token: 349 '<|reserved_339|>' is not marked as EOG
load: control token: 493 '<|reserved_483|>' is not marked as EOG
load: control token: 131 '<|reserved_121|>' is not marked as EOG
load: control token: 157 '<|reserved_147|>' is not marked as EOG
load: control token: 236 '<|reserved_226|>' is not marked as EOG
load: control token: 293 '<|reserved_283|>' is not marked as EOG
load: control token: 80 '<|reserved_70|>' is not marked as EOG
load: control token: 85 '<|reserved_75|>' is not marked as EOG
load: control token: 179 '<|reserved_169|>' is not marked as EOG
load: control token: 418 '<|reserved_408|>' is not marked as EOG
load: control token: 360 '<|reserved_350|>' is not marked as EOG
load: control token: 401 '<|reserved_391|>' is not marked as EOG
load: control token: 133 '<|reserved_123|>' is not marked as EOG
load: control token: 60 '<|reserved_50|>' is not marked as EOG
load: control token: 114 '<|reserved_104|>' is not marked as EOG
load: control token: 190 '<|reserved_180|>' is not marked as EOG
load: control token: 70 '<|reserved_60|>' is not marked as EOG
load: control token: 218 '<|reserved_208|>' is not marked as EOG
load: control token: 260 '<|reserved_250|>' is not marked as EOG
load: control token: 269 '<|reserved_259|>' is not marked as EOG
load: control token: 282 '<|reserved_272|>' is not marked as EOG
load: control token: 284 '<|reserved_274|>' is not marked as EOG
load: control token: 315 '<|reserved_305|>' is not marked as EOG
load: control token: 346 '<|reserved_336|>' is not marked as EOG
load: control token: 317 '<|reserved_307|>' is not marked as EOG
load: control token: 448 '<|reserved_438|>' is not marked as EOG
load: control token: 296 '<|reserved_286|>' is not marked as EOG
load: control token: 64 '<|reserved_54|>' is not marked as EOG
load: control token: 87 '<|reserved_77|>' is not marked as EOG
load: control token: 248 '<|reserved_238|>' is not marked as EOG
load: control token: 286 '<|reserved_276|>' is not marked as EOG
load: control token: 351 '<|reserved_341|>' is not marked as EOG
load: control token: 299 '<|reserved_289|>' is not marked as EOG
load: control token: 303 '<|reserved_293|>' is not marked as EOG
load: control token: 118 '<|reserved_108|>' is not marked as EOG
load: control token: 380 '<|reserved_370|>' is not marked as EOG
load: control token: 146 '<|reserved_136|>' is not marked as EOG
load: control token: 188 '<|reserved_178|>' is not marked as EOG
load: control token: 311 '<|reserved_301|>' is not marked as EOG
load: control token: 312 '<|reserved_302|>' is not marked as EOG
load: control token: 427 '<|reserved_417|>' is not marked as EOG
load: control token: 435 '<|reserved_425|>' is not marked as EOG
load: control token: 322 '<|reserved_312|>' is not marked as EOG
load: control token: 290 '<|reserved_280|>' is not marked as EOG
load: control token: 90 '<|reserved_80|>' is not marked as EOG
load: control token: 428 '<|reserved_418|>' is not marked as EOG
load: control token: 54 '<|reserved_44|>' is not marked as EOG
load: control token: 457 '<|reserved_447|>' is not marked as EOG
load: control token: 92 '<|reserved_82|>' is not marked as EOG
load: control token: 262 '<|reserved_252|>' is not marked as EOG
load: control token: 450 '<|reserved_440|>' is not marked as EOG
load: control token: 291 '<|reserved_281|>' is not marked as EOG
load: control token: 217 '<|reserved_207|>' is not marked as EOG
load: control token: 276 '<|reserved_266|>' is not marked as EOG
load: control token: 441 '<|reserved_431|>' is not marked as EOG
load: control token: 353 '<|reserved_343|>' is not marked as EOG
load: control token: 230 '<|reserved_220|>' is not marked as EOG
load: control token: 376 '<|reserved_366|>' is not marked as EOG
load: control token: 411 '<|reserved_401|>' is not marked as EOG
load: control token: 155 '<|reserved_145|>' is not marked as EOG
load: control token: 105 '<|reserved_95|>' is not marked as EOG
load: control token: 126 '<|reserved_116|>' is not marked as EOG
load: control token: 368 '<|reserved_358|>' is not marked as EOG
load: control token: 166 '<|reserved_156|>' is not marked as EOG
load: control token: 51 '<|reserved_41|>' is not marked as EOG
load: control token: 371 '<|reserved_361|>' is not marked as EOG
load: control token: 372 '<|reserved_362|>' is not marked as EOG
load: control token: 453 '<|reserved_443|>' is not marked as EOG
load: control token: 285 '<|reserved_275|>' is not marked as EOG
load: control token: 72 '<|reserved_62|>' is not marked as EOG
load: control token: 383 '<|reserved_373|>' is not marked as EOG
load: control token: 347 '<|reserved_337|>' is not marked as EOG
load: control token: 436 '<|reserved_426|>' is not marked as EOG
load: control token: 115 '<|reserved_105|>' is not marked as EOG
load: control token: 476 '<|reserved_466|>' is not marked as EOG
load: control token: 355 '<|reserved_345|>' is not marked as EOG
load: control token: 459 '<|reserved_449|>' is not marked as EOG
load: control token: 231 '<|reserved_221|>' is not marked as EOG
load: control token: 142 '<|reserved_132|>' is not marked as EOG
load: control token: 485 '<|reserved_475|>' is not marked as EOG
load: control token: 445 '<|reserved_435|>' is not marked as EOG
load: control token: 489 '<|reserved_479|>' is not marked as EOG
load: control token: 344 '<|reserved_334|>' is not marked as EOG
load: control token: 24 '<|reserved_14|>' is not marked as EOG
load: control token: 237 '<|reserved_227|>' is not marked as EOG
load: control token: 84 '<|reserved_74|>' is not marked as EOG
load: control token: 164 '<|reserved_154|>' is not marked as EOG
load: control token: 327 '<|reserved_317|>' is not marked as EOG
load: control token: 335 '<|reserved_325|>' is not marked as EOG
load: control token: 102 '<|reserved_92|>' is not marked as EOG
load: control token: 98 '<|reserved_88|>' is not marked as EOG
load: control token: 41 '<|reserved_31|>' is not marked as EOG
load: control token: 481 '<|reserved_471|>' is not marked as EOG
load: control token: 254 '<|reserved_244|>' is not marked as EOG
load: control token: 95 '<|reserved_85|>' is not marked as EOG
load: control token: 467 '<|reserved_457|>' is not marked as EOG
load: control token: 128 '<|reserved_118|>' is not marked as EOG
load: control token: 224 '<|reserved_214|>' is not marked as EOG
load: control token: 330 '<|reserved_320|>' is not marked as EOG
load: control token: 68 '<|reserved_58|>' is not marked as EOG
load: control token: 151 '<|reserved_141|>' is not marked as EOG
load: control token: 350 '<|reserved_340|>' is not marked as EOG
load: control token: 402 '<|reserved_392|>' is not marked as EOG
load: control token: 306 '<|reserved_296|>' is not marked as EOG
load: control token: 365 '<|reserved_355|>' is not marked as EOG
load: control token: 477 '<|reserved_467|>' is not marked as EOG
load: control token: 266 '<|reserved_256|>' is not marked as EOG
load: control token: 486 '<|reserved_476|>' is not marked as EOG
load: control token: 33 '<|reserved_23|>' is not marked as EOG
load: control token: 345 '<|reserved_335|>' is not marked as EOG
load: control token: 34 '<|reserved_24|>' is not marked as EOG
load: control token: 30 '<|reserved_20|>' is not marked as EOG
load: control token: 367 '<|reserved_357|>' is not marked as EOG
load: control token: 403 '<|reserved_393|>' is not marked as EOG
load: control token: 245 '<|reserved_235|>' is not marked as EOG
load: control token: 193 '<|reserved_183|>' is not marked as EOG
load: control token: 321 '<|reserved_311|>' is not marked as EOG
load: control token: 301 '<|reserved_291|>' is not marked as EOG
load: control token: 320 '<|reserved_310|>' is not marked as EOG
load: control token: 246 '<|reserved_236|>' is not marked as EOG
load: control token: 405 '<|reserved_395|>' is not marked as EOG
load: control token: 337 '<|reserved_327|>' is not marked as EOG
load: control token: 13 '<|tool_response_end|>' is not marked as EOG
load: control token: 414 '<|reserved_404|>' is not marked as EOG
load: control token: 215 '<|reserved_205|>' is not marked as EOG
load: control token: 356 '<|reserved_346|>' is not marked as EOG
load: control token: 159 '<|reserved_149|>' is not marked as EOG
load: control token: 377 '<|reserved_367|>' is not marked as EOG
load: control token: 494 '<|reserved_484|>' is not marked as EOG
load: control token: 216 '<|reserved_206|>' is not marked as EOG
load: control token: 144 '<|reserved_134|>' is not marked as EOG
load: control token: 288 '<|reserved_278|>' is not marked as EOG
load: control token: 162 '<|reserved_152|>' is not marked as EOG
load: control token: 238 '<|reserved_228|>' is not marked as EOG
load: control token: 374 '<|reserved_364|>' is not marked as EOG
load: control token: 63 '<|reserved_53|>' is not marked as EOG
load: control token: 420 '<|reserved_410|>' is not marked as EOG
load: control token: 482 '<|reserved_472|>' is not marked as EOG
load: control token: 214 '<|reserved_204|>' is not marked as EOG
load: control token: 417 '<|reserved_407|>' is not marked as EOG
load: control token: 39 '<|reserved_29|>' is not marked as EOG
load: control token: 425 '<|reserved_415|>' is not marked as EOG
load: control token: 77 '<|reserved_67|>' is not marked as EOG
load: control token: 94 '<|reserved_84|>' is not marked as EOG
load: control token: 50 '<|reserved_40|>' is not marked as EOG
load: control token: 319 '<|reserved_309|>' is not marked as EOG
load: control token: 171 '<|reserved_161|>' is not marked as EOG
load: control token: 318 '<|reserved_308|>' is not marked as EOG
load: control token: 44 '<|reserved_34|>' is not marked as EOG
load: control token: 207 '<|reserved_197|>' is not marked as EOG
load: control token: 274 '<|reserved_264|>' is not marked as EOG
load: control token: 120 '<|reserved_110|>' is not marked as EOG
load: control token: 106 '<|reserved_96|>' is not marked as EOG
load: control token: 28 '<|reserved_18|>' is not marked as EOG
load: control token: 18 '<|reserved_8|>' is not marked as EOG
load: control token: 465 '<|reserved_455|>' is not marked as EOG
load: control token: 109 '<|reserved_99|>' is not marked as EOG
load: control token: 474 '<|reserved_464|>' is not marked as EOG
load: control token: 379 '<|reserved_369|>' is not marked as EOG
load: control token: 17 '<|reserved_7|>' is not marked as EOG
load: control token: 464 '<|reserved_454|>' is not marked as EOG
load: control token: 307 '<|reserved_297|>' is not marked as EOG
load: control token: 310 '<|reserved_300|>' is not marked as EOG
load: control token: 187 '<|reserved_177|>' is not marked as EOG
load: control token: 125 '<|reserved_115|>' is not marked as EOG
load: control token: 336 '<|reserved_326|>' is not marked as EOG
load: control token: 410 '<|reserved_400|>' is not marked as EOG
load: control token: 154 '<|reserved_144|>' is not marked as EOG
load: control token: 180 '<|reserved_170|>' is not marked as EOG
load: control token: 53 '<|reserved_43|>' is not marked as EOG
load: control token: 22 '<|reserved_12|>' is not marked as EOG
load: control token: 147 '<|reserved_137|>' is not marked as EOG
load: control token: 172 '<|reserved_162|>' is not marked as EOG
load: control token: 454 '<|reserved_444|>' is not marked as EOG
load: control token: 292 '<|reserved_282|>' is not marked as EOG
load: control token: 234 '<|reserved_224|>' is not marked as EOG
load: control token: 55 '<|reserved_45|>' is not marked as EOG
load: control token: 407 '<|reserved_397|>' is not marked as EOG
load: control token: 152 '<|reserved_142|>' is not marked as EOG
load: control token: 189 '<|reserved_179|>' is not marked as EOG
load: control token: 198 '<|reserved_188|>' is not marked as EOG
load: control token: 61 '<|reserved_51|>' is not marked as EOG
load: control token: 456 '<|reserved_446|>' is not marked as EOG
load: control token: 305 '<|reserved_295|>' is not marked as EOG
load: control token: 160 '<|reserved_150|>' is not marked as EOG
load: control token: 378 '<|reserved_368|>' is not marked as EOG
load: control token: 404 '<|reserved_394|>' is not marked as EOG
load: control token: 232 '<|reserved_222|>' is not marked as EOG
load: control token: 348 '<|reserved_338|>' is not marked as EOG
load: control token: 419 '<|reserved_409|>' is not marked as EOG
load: control token: 287 '<|reserved_277|>' is not marked as EOG
load: control token: 86 '<|reserved_76|>' is not marked as EOG
load: control token: 58 '<|reserved_48|>' is not marked as EOG
load: control token: 183 '<|reserved_173|>' is not marked as EOG
load: control token: 369 '<|reserved_359|>' is not marked as EOG
load: control token: 210 '<|reserved_200|>' is not marked as EOG
load: control token: 434 '<|reserved_424|>' is not marked as EOG
load: control token: 323 '<|reserved_313|>' is not marked as EOG
load: control token: 268 '<|reserved_258|>' is not marked as EOG
load: control token: 197 '<|reserved_187|>' is not marked as EOG
load: control token: 184 '<|reserved_174|>' is not marked as EOG
load: control token: 325 '<|reserved_315|>' is not marked as EOG
load: control token: 138 '<|reserved_128|>' is not marked as EOG
load: control token: 473 '<|reserved_463|>' is not marked as EOG
load: control token: 150 '<|reserved_140|>' is not marked as EOG
load: control token: 176 '<|reserved_166|>' is not marked as EOG
load: control token: 280 '<|reserved_270|>' is not marked as EOG
load: control token: 294 '<|reserved_284|>' is not marked as EOG
load: control token: 194 '<|reserved_184|>' is not marked as EOG
load: control token: 163 '<|reserved_153|>' is not marked as EOG
load: control token: 88 '<|reserved_78|>' is not marked as EOG
load: control token: 104 '<|reserved_94|>' is not marked as EOG
load: control token: 139 '<|reserved_129|>' is not marked as EOG
load: control token: 211 '<|reserved_201|>' is not marked as EOG
load: control token: 129 '<|reserved_119|>' is not marked as EOG
load: control token: 495 '<|reserved_485|>' is not marked as EOG
load: control token: 213 '<|reserved_203|>' is not marked as EOG
load: control token: 251 '<|reserved_241|>' is not marked as EOG
load: control token: 1 '<|startoftext|>' is not marked as EOG
load: control token: 478 '<|reserved_468|>' is not marked as EOG
load: control token: 304 '<|reserved_294|>' is not marked as EOG
load: control token: 391 '<|reserved_381|>' is not marked as EOG
load: control token: 421 '<|reserved_411|>' is not marked as EOG
load: control token: 490 '<|reserved_480|>' is not marked as EOG
load: control token: 352 '<|reserved_342|>' is not marked as EOG
load: control token: 386 '<|reserved_376|>' is not marked as EOG
load: control token: 458 '<|reserved_448|>' is not marked as EOG
load: control token: 308 '<|reserved_298|>' is not marked as EOG
load: control token: 267 '<|reserved_257|>' is not marked as EOG
load: control token: 97 '<|reserved_87|>' is not marked as EOG
load: control token: 76 '<|reserved_66|>' is not marked as EOG
load: control token: 447 '<|reserved_437|>' is not marked as EOG
load: control token: 117 '<|reserved_107|>' is not marked as EOG
load: control token: 191 '<|reserved_181|>' is not marked as EOG
load: control token: 75 '<|reserved_65|>' is not marked as EOG
load: control token: 413 '<|reserved_403|>' is not marked as EOG
load: control token: 20 '<|reserved_10|>' is not marked as EOG
load: control token: 366 '<|reserved_356|>' is not marked as EOG
load: control token: 247 '<|reserved_237|>' is not marked as EOG
load: control token: 89 '<|reserved_79|>' is not marked as EOG
load: control token: 333 '<|reserved_323|>' is not marked as EOG
load: control token: 174 '<|reserved_164|>' is not marked as EOG
load: control token: 212 '<|reserved_202|>' is not marked as EOG
load: control token: 4 '<|fim_mid|>' is not marked as EOG
load: control token: 324 '<|reserved_314|>' is not marked as EOG
load: control token: 334 '<|reserved_324|>' is not marked as EOG
load: control token: 208 '<|reserved_198|>' is not marked as EOG
load: control token: 168 '<|reserved_158|>' is not marked as EOG
load: control token: 16 '<|reserved_6|>' is not marked as EOG
load: control token: 329 '<|reserved_319|>' is not marked as EOG
load: control token: 364 '<|reserved_354|>' is not marked as EOG
load: control token: 62 '<|reserved_52|>' is not marked as EOG
load: control token: 338 '<|reserved_328|>' is not marked as EOG
load: control token: 110 '<|reserved_100|>' is not marked as EOG
load: control token: 433 '<|reserved_423|>' is not marked as EOG
load: control token: 32 '<|reserved_22|>' is not marked as EOG
load: control token: 452 '<|reserved_442|>' is not marked as EOG
load: control token: 148 '<|reserved_138|>' is not marked as EOG
load: control token: 331 '<|reserved_321|>' is not marked as EOG
load: control token: 469 '<|reserved_459|>' is not marked as EOG
load: control token: 375 '<|reserved_365|>' is not marked as EOG
load: control token: 252 '<|reserved_242|>' is not marked as EOG
load: control token: 67 '<|reserved_57|>' is not marked as EOG
load: control token: 389 '<|reserved_379|>' is not marked as EOG
load: control token: 93 '<|reserved_83|>' is not marked as EOG
load: control token: 40 '<|reserved_30|>' is not marked as EOG
load: control token: 479 '<|reserved_469|>' is not marked as EOG
load: control token: 395 '<|reserved_385|>' is not marked as EOG
load: control token: 0 '<|pad|>' is not marked as EOG
load: printing all EOG tokens:
load: - 2 ('<|endoftext|>')
load: - 7 ('<|im_end|>')
load: special tokens cache size = 507
load: token to piece cache size = 0.3756 MB
print_info: arch = lfm2
print_info: vocab_only = 0
print_info: no_alloc = 1
print_info: n_ctx_train = 128000
print_info: n_embd = 512
print_info: n_embd_inp = 512
print_info: n_layer = 8
print_info: n_head = 16
print_info: n_head_kv = [0, 0, 8, 0, 8, 0, 8, 0]
print_info: n_rot = 32
print_info: n_swa = 30
print_info: is_swa_any = 1
print_info: n_embd_head_k = 32
print_info: n_embd_head_v = 32
print_info: n_gqa = [0, 0, 2, 0, 2, 0, 2, 0]
print_info: n_embd_k_gqa = [0, 0, 256, 0, 256, 0, 256, 0]
print_info: n_embd_v_gqa = [0, 0, 256, 0, 256, 0, 256, 0]
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 2304
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: freq_base_swa = 10000.0
print_info: freq_scale_swa = 1
print_info: n_ctx_orig_yarn = 128000
print_info: rope_yarn_log_mul = 0.0000
print_info: rope_finetuned = unknown
print_info: model type = ?B
print_info: model params = 70.14 M
print_info: general.name = Audio_Detokenizer
print_info: vocab type = BPE
print_info: n_vocab = 65536
print_info: n_merges = 63683
print_info: BOS token = 1 '<|startoftext|>'
print_info: EOS token = 7 '<|im_end|>'
print_info: EOT token = 2 '<|endoftext|>'
print_info: PAD token = 0 '<|pad|>'
print_info: LF token = 708 'Ċ'
print_info: EOG token = 2 '<|endoftext|>'
print_info: EOG token = 7 '<|im_end|>'
print_info: max token length = 30
load_tensors: loading model tensors, this can take a while... (mmap = false, direct_io = true)
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6120348
load_tensors: layer 0 assigned to device CUDA0, is_swa = 0
load_tensors: layer 1 assigned to device CUDA0, is_swa = 0
load_tensors: layer 2 assigned to device CUDA0, is_swa = 1
load_tensors: layer 3 assigned to device CUDA0, is_swa = 0
load_tensors: layer 4 assigned to device CUDA0, is_swa = 1
load_tensors: layer 5 assigned to device CUDA0, is_swa = 0
load_tensors: layer 6 assigned to device CUDA0, is_swa = 1
load_tensors: layer 7 assigned to device CUDA0, is_swa = 0
load_tensors: layer 8 assigned to device CUDA0, is_swa = 0
create_tensor: loading tensor token_embd.weight
create_tensor: loading tensor token_embd_norm.weight
create_tensor: loading tensor token_embd.weight
create_tensor: loading tensor blk.0.ffn_norm.weight
create_tensor: loading tensor blk.0.ffn_gate.weight
create_tensor: loading tensor blk.0.ffn_down.weight
create_tensor: loading tensor blk.0.ffn_up.weight
create_tensor: loading tensor blk.0.attn_norm.weight
create_tensor: loading tensor blk.0.shortconv.conv.weight
create_tensor: loading tensor blk.0.shortconv.in_proj.weight
create_tensor: loading tensor blk.0.shortconv.out_proj.weight
create_tensor: loading tensor blk.1.ffn_norm.weight
create_tensor: loading tensor blk.1.ffn_gate.weight
create_tensor: loading tensor blk.1.ffn_down.weight
create_tensor: loading tensor blk.1.ffn_up.weight
create_tensor: loading tensor blk.1.attn_norm.weight
create_tensor: loading tensor blk.1.shortconv.conv.weight
create_tensor: loading tensor blk.1.shortconv.in_proj.weight
create_tensor: loading tensor blk.1.shortconv.out_proj.weight
create_tensor: loading tensor blk.2.ffn_norm.weight
create_tensor: loading tensor blk.2.ffn_gate.weight
create_tensor: loading tensor blk.2.ffn_down.weight
create_tensor: loading tensor blk.2.ffn_up.weight
create_tensor: loading tensor blk.2.attn_norm.weight
create_tensor: loading tensor blk.2.attn_q_norm.weight
create_tensor: loading tensor blk.2.attn_k_norm.weight
create_tensor: loading tensor blk.2.attn_q.weight
create_tensor: loading tensor blk.2.attn_k.weight
create_tensor: loading tensor blk.2.attn_v.weight
create_tensor: loading tensor blk.2.attn_output.weight
create_tensor: loading tensor blk.3.ffn_norm.weight
create_tensor: loading tensor blk.3.ffn_gate.weight
create_tensor: loading tensor blk.3.ffn_down.weight
create_tensor: loading tensor blk.3.ffn_up.weight
create_tensor: loading tensor blk.3.attn_norm.weight
create_tensor: loading tensor blk.3.shortconv.conv.weight
create_tensor: loading tensor blk.3.shortconv.in_proj.weight
create_tensor: loading tensor blk.3.shortconv.out_proj.weight
create_tensor: loading tensor blk.4.ffn_norm.weight
create_tensor: loading tensor blk.4.ffn_gate.weight
create_tensor: loading tensor blk.4.ffn_down.weight
create_tensor: loading tensor blk.4.ffn_up.weight
create_tensor: loading tensor blk.4.attn_norm.weight
create_tensor: loading tensor blk.4.attn_q_norm.weight
create_tensor: loading tensor blk.4.attn_k_norm.weight
create_tensor: loading tensor blk.4.attn_q.weight
create_tensor: loading tensor blk.4.attn_k.weight
create_tensor: loading tensor blk.4.attn_v.weight
create_tensor: loading tensor blk.4.attn_output.weight
create_tensor: loading tensor blk.5.ffn_norm.weight
create_tensor: loading tensor blk.5.ffn_gate.weight
create_tensor: loading tensor blk.5.ffn_down.weight
create_tensor: loading tensor blk.5.ffn_up.weight
create_tensor: loading tensor blk.5.attn_norm.weight
create_tensor: loading tensor blk.5.shortconv.conv.weight
create_tensor: loading tensor blk.5.shortconv.in_proj.weight
create_tensor: loading tensor blk.5.shortconv.out_proj.weight
create_tensor: loading tensor blk.6.ffn_norm.weight
create_tensor: loading tensor blk.6.ffn_gate.weight
create_tensor: loading tensor blk.6.ffn_down.weight
create_tensor: loading tensor blk.6.ffn_up.weight
create_tensor: loading tensor blk.6.attn_norm.weight
create_tensor: loading tensor blk.6.attn_q_norm.weight
create_tensor: loading tensor blk.6.attn_k_norm.weight
create_tensor: loading tensor blk.6.attn_q.weight
create_tensor: loading tensor blk.6.attn_k.weight
create_tensor: loading tensor blk.6.attn_v.weight
create_tensor: loading tensor blk.6.attn_output.weight
create_tensor: loading tensor blk.7.ffn_norm.weight
create_tensor: loading tensor blk.7.ffn_gate.weight
create_tensor: loading tensor blk.7.ffn_down.weight
create_tensor: loading tensor blk.7.ffn_up.weight
create_tensor: loading tensor blk.7.attn_norm.weight
create_tensor: loading tensor blk.7.shortconv.conv.weight
create_tensor: loading tensor blk.7.shortconv.in_proj.weight
create_tensor: loading tensor blk.7.shortconv.out_proj.weight
create_tensor: loading tensor dense_2.weight
create_tensor: loading tensor dense_2.bias
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6120348
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6120348
load_tensors: offloading output layer to GPU
load_tensors: offloading 7 repeating layers to GPU
load_tensors: offloaded 9/9 layers to GPU
load_tensors: CUDA0 model buffer size = 0.00 MiB
load_tensors: CUDA_Host model buffer size = 0.00 MiB
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 128000
llama_context: n_ctx_seq = 128000
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
set_abort_callback: call
llama_context: CUDA_Host output buffer size = 0.25 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 128000 cells
llama_kv_cache: layer 0: filtered
llama_kv_cache: layer 1: filtered
llama_kv_cache: layer 2: filtered
llama_kv_cache: layer 3: filtered
llama_kv_cache: layer 4: filtered
llama_kv_cache: layer 5: filtered
llama_kv_cache: layer 6: filtered
llama_kv_cache: layer 7: filtered
llama_kv_cache: size = 0.00 MiB (128000 cells, 0 layers, 1/1 seqs), K (f16): 0.00 MiB, V (f16): 0.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 768 cells
llama_kv_cache: layer 0: filtered
llama_kv_cache: layer 1: filtered
llama_kv_cache: layer 2: dev = CUDA0
llama_kv_cache: layer 3: filtered
llama_kv_cache: layer 4: dev = CUDA0
llama_kv_cache: layer 5: filtered
llama_kv_cache: layer 6: dev = CUDA0
llama_kv_cache: layer 7: filtered
llama_kv_cache: CUDA0 KV buffer size = 0.00 MiB
llama_kv_cache: size = 2.25 MiB ( 768 cells, 3 layers, 1/1 seqs), K (f16): 1.12 MiB, V (f16): 1.12 MiB
llama_memory_recurrent, layer 0: dev = CUDA0
llama_memory_recurrent, layer 1: dev = CUDA0
llama_memory_recurrent: layer 2: skipped
llama_memory_recurrent, layer 3: dev = CUDA0
llama_memory_recurrent: layer 4: skipped
llama_memory_recurrent, layer 5: dev = CUDA0
llama_memory_recurrent: layer 6: skipped
llama_memory_recurrent, layer 7: dev = CUDA0
llama_memory_recurrent: CUDA0 RS buffer size = 0.02 MiB
llama_memory_recurrent: size = 0.02 MiB ( 1 cells, 8 layers, 1 seqs), R (f32): 0.02 MiB, S (f32): 0.00 MiB
llama_context: enumerating backends
llama_context: backend_ptrs.size() = 3
sched_reserve: reserving ...
sched_reserve: max_nodes = 1024
sched_reserve: reserving full memory module
sched_reserve: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 1
graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1
sched_reserve: layer 2 is assigned to device CUDA0 but the Flash Attention tensor is assigned to device CPU (usually due to missing support)
sched_reserve: Flash Attention was auto, set to disabled
graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512
graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1
graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512
sched_reserve: CUDA0 compute buffer size = 132.50 MiB
sched_reserve: CUDA_Host compute buffer size = 2.51 MiB
sched_reserve: graph nodes = 295
sched_reserve: graph splits = 2
sched_reserve: reserve took 6.13 ms, sched copies = 1
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6116608
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6116608
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - CUDA0 (Orin) | 30697 = 5973 + ( 268 = 133 + 2 + 132) + 24455 |
llama_memory_breakdown_print: | - Host | 66 = 64 + 0 + 2 |
llama_params_fit_impl: projected to use 268 MiB of device memory vs. 5973 MiB of free device memory
llama_params_fit_impl: will leave 5704 >= 1024 MiB of free device memory, no changes needed
llama_params_fit: successfully fit params to free device memory
llama_params_fit: fitting params to free memory took 0.21 seconds
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6116608
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6116608
llama_model_load_from_file_impl: using device CUDA0 (Orin) (0000:00:00.0) - 5973 MiB free
llama_model_loader: direct I/O is enabled, disabling mmap
llama_model_loader: loaded meta data with 29 key-value pairs and 77 tensors from /opt/usbhd/models/LFM2.5-Audio-1.5B-GGUF/tokenizer-LFM2.5-Audio-1.5B-F16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = lfm2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Audio_Detokenizer
llama_model_loader: - kv 3: general.size_label str = 70M
llama_model_loader: - kv 4: lfm2.block_count u32 = 8
llama_model_loader: - kv 5: lfm2.context_length u32 = 128000
llama_model_loader: - kv 6: lfm2.embedding_length u32 = 512
llama_model_loader: - kv 7: lfm2.feed_forward_length u32 = 2304
llama_model_loader: - kv 8: lfm2.attention.head_count u32 = 16
llama_model_loader: - kv 9: lfm2.attention.head_count_kv arr[i32,8] = [0, 0, 8, 0, 8, 0, 8, 0]
llama_model_loader: - kv 10: lfm2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: lfm2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: general.file_type u32 = 1
llama_model_loader: - kv 13: lfm2.vocab_size u32 = 65536
llama_model_loader: - kv 14: lfm2.shortconv.l_cache u32 = 3
llama_model_loader: - kv 15: lfm2.attention.sliding_window u32 = 30
llama_model_loader: - kv 16: lfm2.embedding_length_out u32 = 1282
llama_model_loader: - kv 17: general.quantization_version u32 = 2
llama_model_loader: - kv 18: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 19: tokenizer.ggml.pre str = lfm2
llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end...
llama_model_loader: - kv 21: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 22: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �...
llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 7
llama_model_loader: - kv 25: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 26: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 27: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - type f32: 29 tensors
llama_model_loader: - type f16: 48 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = F16
print_info: file size = 133.82 MiB (16.00 BPW)
init_tokenizer: initializing tokenizer for type 2
load: 0 unused tokens
load: control token: 64398 '<|file_start|>' is not marked as EOG
load: control token: 64396 '<|review_start|>' is not marked as EOG
load: control token: 64395 '<|cot_end|>' is not marked as EOG
load: control token: 64397 '<|review_end|>' is not marked as EOG
load: control token: 359 '<|reserved_349|>' is not marked as EOG
load: control token: 158 '<|reserved_148|>' is not marked as EOG
load: control token: 363 '<|reserved_353|>' is not marked as EOG
load: control token: 178 '<|reserved_168|>' is not marked as EOG
load: control token: 121 '<|reserved_111|>' is not marked as EOG
load: control token: 19 '<|reserved_9|>' is not marked as EOG
load: control token: 430 '<|reserved_420|>' is not marked as EOG
load: control token: 423 '<|reserved_413|>' is not marked as EOG
load: control token: 107 '<|reserved_97|>' is not marked as EOG
load: control token: 393 '<|reserved_383|>' is not marked as EOG
load: control token: 397 '<|reserved_387|>' is not marked as EOG
load: control token: 206 '<|reserved_196|>' is not marked as EOG
load: control token: 314 '<|reserved_304|>' is not marked as EOG
load: control token: 31 '<|reserved_21|>' is not marked as EOG
load: control token: 195 '<|reserved_185|>' is not marked as EOG
load: control token: 134 '<|reserved_124|>' is not marked as EOG
load: control token: 140 '<|reserved_130|>' is not marked as EOG
load: control token: 48 '<|reserved_38|>' is not marked as EOG
load: control token: 444 '<|reserved_434|>' is not marked as EOG
load: control token: 69 '<|reserved_59|>' is not marked as EOG
load: control token: 354 '<|reserved_344|>' is not marked as EOG
load: control token: 12 '<|tool_response_start|>' is not marked as EOG
load: control token: 37 '<|reserved_27|>' is not marked as EOG
load: control token: 398 '<|reserved_388|>' is not marked as EOG
load: control token: 241 '<|reserved_231|>' is not marked as EOG
load: control token: 390 '<|reserved_380|>' is not marked as EOG
load: control token: 220 '<|reserved_210|>' is not marked as EOG
load: control token: 177 '<|reserved_167|>' is not marked as EOG
load: control token: 415 '<|reserved_405|>' is not marked as EOG
load: control token: 381 '<|reserved_371|>' is not marked as EOG
load: control token: 99 '<|reserved_89|>' is not marked as EOG
load: control token: 11 '<|tool_call_end|>' is not marked as EOG
load: control token: 136 '<|reserved_126|>' is not marked as EOG
load: control token: 78 '<|reserved_68|>' is not marked as EOG
load: control token: 23 '<|reserved_13|>' is not marked as EOG
load: control token: 250 '<|reserved_240|>' is not marked as EOG
load: control token: 500 '<|reserved_490|>' is not marked as EOG
load: control token: 259 '<|reserved_249|>' is not marked as EOG
load: control token: 339 '<|reserved_329|>' is not marked as EOG
load: control token: 65 '<|reserved_55|>' is not marked as EOG
load: control token: 313 '<|reserved_303|>' is not marked as EOG
load: control token: 192 '<|reserved_182|>' is not marked as EOG
load: control token: 499 '<|reserved_489|>' is not marked as EOG
load: control token: 64399 '<|file_end|>' is not marked as EOG
load: control token: 170 '<|reserved_160|>' is not marked as EOG
load: control token: 388 '<|reserved_378|>' is not marked as EOG
load: control token: 358 '<|reserved_348|>' is not marked as EOG
load: control token: 49 '<|reserved_39|>' is not marked as EOG
load: control token: 173 '<|reserved_163|>' is not marked as EOG
load: control token: 472 '<|reserved_462|>' is not marked as EOG
load: control token: 219 '<|reserved_209|>' is not marked as EOG
load: control token: 137 '<|reserved_127|>' is not marked as EOG
load: control token: 124 '<|reserved_114|>' is not marked as EOG
load: control token: 196 '<|reserved_186|>' is not marked as EOG
load: control token: 253 '<|reserved_243|>' is not marked as EOG
load: control token: 112 '<|reserved_102|>' is not marked as EOG
load: control token: 100 '<|reserved_90|>' is not marked as EOG
load: control token: 342 '<|reserved_332|>' is not marked as EOG
load: control token: 26 '<|reserved_16|>' is not marked as EOG
load: control token: 460 '<|reserved_450|>' is not marked as EOG
load: control token: 437 '<|reserved_427|>' is not marked as EOG
load: control token: 186 '<|reserved_176|>' is not marked as EOG
load: control token: 244 '<|reserved_234|>' is not marked as EOG
load: control token: 281 '<|reserved_271|>' is not marked as EOG
load: control token: 273 '<|reserved_263|>' is not marked as EOG
load: control token: 257 '<|reserved_247|>' is not marked as EOG
load: control token: 256 '<|reserved_246|>' is not marked as EOG
load: control token: 182 '<|reserved_172|>' is not marked as EOG
load: control token: 492 '<|reserved_482|>' is not marked as EOG
load: control token: 153 '<|reserved_143|>' is not marked as EOG
load: control token: 455 '<|reserved_445|>' is not marked as EOG
load: control token: 249 '<|reserved_239|>' is not marked as EOG
load: control token: 226 '<|reserved_216|>' is not marked as EOG
load: control token: 461 '<|reserved_451|>' is not marked as EOG
load: control token: 302 '<|reserved_292|>' is not marked as EOG
load: control token: 442 '<|reserved_432|>' is not marked as EOG
load: control token: 10 '<|tool_call_start|>' is not marked as EOG
load: control token: 462 '<|reserved_452|>' is not marked as EOG
load: control token: 169 '<|reserved_159|>' is not marked as EOG
load: control token: 202 '<|reserved_192|>' is not marked as EOG
load: control token: 36 '<|reserved_26|>' is not marked as EOG
load: control token: 491 '<|reserved_481|>' is not marked as EOG
load: control token: 265 '<|reserved_255|>' is not marked as EOG
load: control token: 203 '<|reserved_193|>' is not marked as EOG
load: control token: 295 '<|reserved_285|>' is not marked as EOG
load: control token: 223 '<|reserved_213|>' is not marked as EOG
load: control token: 422 '<|reserved_412|>' is not marked as EOG
load: control token: 52 '<|reserved_42|>' is not marked as EOG
load: control token: 116 '<|reserved_106|>' is not marked as EOG
load: control token: 27 '<|reserved_17|>' is not marked as EOG
load: control token: 228 '<|reserved_218|>' is not marked as EOG
load: control token: 429 '<|reserved_419|>' is not marked as EOG
load: control token: 66 '<|reserved_56|>' is not marked as EOG
load: control token: 316 '<|reserved_306|>' is not marked as EOG
load: control token: 271 '<|reserved_261|>' is not marked as EOG
load: control token: 209 '<|reserved_199|>' is not marked as EOG
load: control token: 382 '<|reserved_372|>' is not marked as EOG
load: control token: 261 '<|reserved_251|>' is not marked as EOG
load: control token: 222 '<|reserved_212|>' is not marked as EOG
load: control token: 412 '<|reserved_402|>' is not marked as EOG
load: control token: 385 '<|reserved_375|>' is not marked as EOG
load: control token: 225 '<|reserved_215|>' is not marked as EOG
load: control token: 204 '<|reserved_194|>' is not marked as EOG
load: control token: 200 '<|reserved_190|>' is not marked as EOG
load: control token: 45 '<|reserved_35|>' is not marked as EOG
load: control token: 449 '<|reserved_439|>' is not marked as EOG
load: control token: 227 '<|reserved_217|>' is not marked as EOG
load: control token: 161 '<|reserved_151|>' is not marked as EOG
load: control token: 341 '<|reserved_331|>' is not marked as EOG
load: control token: 443 '<|reserved_433|>' is not marked as EOG
load: control token: 488 '<|reserved_478|>' is not marked as EOG
load: control token: 298 '<|reserved_288|>' is not marked as EOG
load: control token: 408 '<|reserved_398|>' is not marked as EOG
load: control token: 145 '<|reserved_135|>' is not marked as EOG
load: control token: 201 '<|reserved_191|>' is not marked as EOG
load: control token: 343 '<|reserved_333|>' is not marked as EOG
load: control token: 255 '<|reserved_245|>' is not marked as EOG
load: control token: 297 '<|reserved_287|>' is not marked as EOG
load: control token: 9 '<|tool_list_end|>' is not marked as EOG
load: control token: 123 '<|reserved_113|>' is not marked as EOG
load: control token: 340 '<|reserved_330|>' is not marked as EOG
load: control token: 487 '<|reserved_477|>' is not marked as EOG
load: control token: 42 '<|reserved_32|>' is not marked as EOG
load: control token: 3 '<|fim_pre|>' is not marked as EOG
load: control token: 468 '<|reserved_458|>' is not marked as EOG
load: control token: 29 '<|reserved_19|>' is not marked as EOG
load: control token: 175 '<|reserved_165|>' is not marked as EOG
load: control token: 451 '<|reserved_441|>' is not marked as EOG
load: control token: 446 '<|reserved_436|>' is not marked as EOG
load: control token: 416 '<|reserved_406|>' is not marked as EOG
load: control token: 240 '<|reserved_230|>' is not marked as EOG
load: control token: 387 '<|reserved_377|>' is not marked as EOG
load: control token: 111 '<|reserved_101|>' is not marked as EOG
load: control token: 73 '<|reserved_63|>' is not marked as EOG
load: control token: 426 '<|reserved_416|>' is not marked as EOG
load: control token: 8 '<|tool_list_start|>' is not marked as EOG
load: control token: 47 '<|reserved_37|>' is not marked as EOG
load: control token: 361 '<|reserved_351|>' is not marked as EOG
load: control token: 289 '<|reserved_279|>' is not marked as EOG
load: control token: 5 '<|fim_suf|>' is not marked as EOG
load: control token: 392 '<|reserved_382|>' is not marked as EOG
load: control token: 56 '<|reserved_46|>' is not marked as EOG
load: control token: 470 '<|reserved_460|>' is not marked as EOG
load: control token: 498 '<|reserved_488|>' is not marked as EOG
load: control token: 438 '<|reserved_428|>' is not marked as EOG
load: control token: 59 '<|reserved_49|>' is not marked as EOG
load: control token: 127 '<|reserved_117|>' is not marked as EOG
load: control token: 399 '<|reserved_389|>' is not marked as EOG
load: control token: 91 '<|reserved_81|>' is not marked as EOG
load: control token: 101 '<|reserved_91|>' is not marked as EOG
load: control token: 35 '<|reserved_25|>' is not marked as EOG
load: control token: 466 '<|reserved_456|>' is not marked as EOG
load: control token: 81 '<|reserved_71|>' is not marked as EOG
load: control token: 432 '<|reserved_422|>' is not marked as EOG
load: control token: 64394 '<|cot_start|>' is not marked as EOG
load: control token: 82 '<|reserved_72|>' is not marked as EOG
load: control token: 480 '<|reserved_470|>' is not marked as EOG
load: control token: 362 '<|reserved_352|>' is not marked as EOG
load: control token: 242 '<|reserved_232|>' is not marked as EOG
load: control token: 181 '<|reserved_171|>' is not marked as EOG
load: control token: 239 '<|reserved_229|>' is not marked as EOG
load: control token: 384 '<|reserved_374|>' is not marked as EOG
load: control token: 471 '<|reserved_461|>' is not marked as EOG
load: control token: 235 '<|reserved_225|>' is not marked as EOG
load: control token: 103 '<|reserved_93|>' is not marked as EOG
load: control token: 406 '<|reserved_396|>' is not marked as EOG
load: control token: 275 '<|reserved_265|>' is not marked as EOG
load: control token: 278 '<|reserved_268|>' is not marked as EOG
load: control token: 119 '<|reserved_109|>' is not marked as EOG
load: control token: 328 '<|reserved_318|>' is not marked as EOG
load: control token: 279 '<|reserved_269|>' is not marked as EOG
load: control token: 484 '<|reserved_474|>' is not marked as EOG
load: control token: 149 '<|reserved_139|>' is not marked as EOG
load: control token: 185 '<|reserved_175|>' is not marked as EOG
load: control token: 373 '<|reserved_363|>' is not marked as EOG
load: control token: 46 '<|reserved_36|>' is not marked as EOG
load: control token: 21 '<|reserved_11|>' is not marked as EOG
load: control token: 409 '<|reserved_399|>' is not marked as EOG
load: control token: 122 '<|reserved_112|>' is not marked as EOG
load: control token: 394 '<|reserved_384|>' is not marked as EOG
load: control token: 165 '<|reserved_155|>' is not marked as EOG
load: control token: 400 '<|reserved_390|>' is not marked as EOG
load: control token: 270 '<|reserved_260|>' is not marked as EOG
load: control token: 132 '<|reserved_122|>' is not marked as EOG
load: control token: 440 '<|reserved_430|>' is not marked as EOG
load: control token: 96 '<|reserved_86|>' is not marked as EOG
load: control token: 233 '<|reserved_223|>' is not marked as EOG
load: control token: 141 '<|reserved_131|>' is not marked as EOG
load: control token: 130 '<|reserved_120|>' is not marked as EOG
load: control token: 205 '<|reserved_195|>' is not marked as EOG
load: control token: 57 '<|reserved_47|>' is not marked as EOG
load: control token: 463 '<|reserved_453|>' is not marked as EOG
load: control token: 475 '<|reserved_465|>' is not marked as EOG
load: control token: 483 '<|reserved_473|>' is not marked as EOG
load: control token: 272 '<|reserved_262|>' is not marked as EOG
load: control token: 229 '<|reserved_219|>' is not marked as EOG
load: control token: 83 '<|reserved_73|>' is not marked as EOG
load: control token: 143 '<|reserved_133|>' is not marked as EOG
load: control token: 43 '<|reserved_33|>' is not marked as EOG
load: control token: 108 '<|reserved_98|>' is not marked as EOG
load: control token: 357 '<|reserved_347|>' is not marked as EOG
load: control token: 396 '<|reserved_386|>' is not marked as EOG
load: control token: 199 '<|reserved_189|>' is not marked as EOG
load: control token: 496 '<|reserved_486|>' is not marked as EOG
load: control token: 6 '<|im_start|>' is not marked as EOG
load: control token: 221 '<|reserved_211|>' is not marked as EOG
load: control token: 370 '<|reserved_360|>' is not marked as EOG
load: control token: 277 '<|reserved_267|>' is not marked as EOG
load: control token: 135 '<|reserved_125|>' is not marked as EOG
load: control token: 439 '<|reserved_429|>' is not marked as EOG
load: control token: 243 '<|reserved_233|>' is not marked as EOG
load: control token: 497 '<|reserved_487|>' is not marked as EOG
load: control token: 167 '<|reserved_157|>' is not marked as EOG
load: control token: 156 '<|reserved_146|>' is not marked as EOG
load: control token: 424 '<|reserved_414|>' is not marked as EOG
load: control token: 258 '<|reserved_248|>' is not marked as EOG
load: control token: 263 '<|reserved_253|>' is not marked as EOG
load: control token: 309 '<|reserved_299|>' is not marked as EOG
load: control token: 300 '<|reserved_290|>' is not marked as EOG
load: control token: 332 '<|reserved_322|>' is not marked as EOG
load: control token: 79 '<|reserved_69|>' is not marked as EOG
load: control token: 326 '<|reserved_316|>' is not marked as EOG
load: control token: 431 '<|reserved_421|>' is not marked as EOG
load: control token: 283 '<|reserved_273|>' is not marked as EOG
load: control token: 264 '<|reserved_254|>' is not marked as EOG
load: control token: 71 '<|reserved_61|>' is not marked as EOG
load: control token: 25 '<|reserved_15|>' is not marked as EOG
load: control token: 113 '<|reserved_103|>' is not marked as EOG
load: control token: 74 '<|reserved_64|>' is not marked as EOG
load: control token: 38 '<|reserved_28|>' is not marked as EOG
load: control token: 349 '<|reserved_339|>' is not marked as EOG
load: control token: 493 '<|reserved_483|>' is not marked as EOG
load: control token: 131 '<|reserved_121|>' is not marked as EOG
load: control token: 157 '<|reserved_147|>' is not marked as EOG
load: control token: 236 '<|reserved_226|>' is not marked as EOG
load: control token: 293 '<|reserved_283|>' is not marked as EOG
load: control token: 80 '<|reserved_70|>' is not marked as EOG
load: control token: 85 '<|reserved_75|>' is not marked as EOG
load: control token: 179 '<|reserved_169|>' is not marked as EOG
load: control token: 418 '<|reserved_408|>' is not marked as EOG
load: control token: 360 '<|reserved_350|>' is not marked as EOG
load: control token: 401 '<|reserved_391|>' is not marked as EOG
load: control token: 133 '<|reserved_123|>' is not marked as EOG
load: control token: 60 '<|reserved_50|>' is not marked as EOG
load: control token: 114 '<|reserved_104|>' is not marked as EOG
load: control token: 190 '<|reserved_180|>' is not marked as EOG
load: control token: 70 '<|reserved_60|>' is not marked as EOG
load: control token: 218 '<|reserved_208|>' is not marked as EOG
load: control token: 260 '<|reserved_250|>' is not marked as EOG
load: control token: 269 '<|reserved_259|>' is not marked as EOG
load: control token: 282 '<|reserved_272|>' is not marked as EOG
load: control token: 284 '<|reserved_274|>' is not marked as EOG
load: control token: 315 '<|reserved_305|>' is not marked as EOG
load: control token: 346 '<|reserved_336|>' is not marked as EOG
load: control token: 317 '<|reserved_307|>' is not marked as EOG
load: control token: 448 '<|reserved_438|>' is not marked as EOG
load: control token: 296 '<|reserved_286|>' is not marked as EOG
load: control token: 64 '<|reserved_54|>' is not marked as EOG
load: control token: 87 '<|reserved_77|>' is not marked as EOG
load: control token: 248 '<|reserved_238|>' is not marked as EOG
load: control token: 286 '<|reserved_276|>' is not marked as EOG
load: control token: 351 '<|reserved_341|>' is not marked as EOG
load: control token: 299 '<|reserved_289|>' is not marked as EOG
load: control token: 303 '<|reserved_293|>' is not marked as EOG
load: control token: 118 '<|reserved_108|>' is not marked as EOG
load: control token: 380 '<|reserved_370|>' is not marked as EOG
load: control token: 146 '<|reserved_136|>' is not marked as EOG
load: control token: 188 '<|reserved_178|>' is not marked as EOG
load: control token: 311 '<|reserved_301|>' is not marked as EOG
load: control token: 312 '<|reserved_302|>' is not marked as EOG
load: control token: 427 '<|reserved_417|>' is not marked as EOG
load: control token: 435 '<|reserved_425|>' is not marked as EOG
load: control token: 322 '<|reserved_312|>' is not marked as EOG
load: control token: 290 '<|reserved_280|>' is not marked as EOG
load: control token: 90 '<|reserved_80|>' is not marked as EOG
load: control token: 428 '<|reserved_418|>' is not marked as EOG
load: control token: 54 '<|reserved_44|>' is not marked as EOG
load: control token: 457 '<|reserved_447|>' is not marked as EOG
load: control token: 92 '<|reserved_82|>' is not marked as EOG
load: control token: 262 '<|reserved_252|>' is not marked as EOG
load: control token: 450 '<|reserved_440|>' is not marked as EOG
load: control token: 291 '<|reserved_281|>' is not marked as EOG
load: control token: 217 '<|reserved_207|>' is not marked as EOG
load: control token: 276 '<|reserved_266|>' is not marked as EOG
load: control token: 441 '<|reserved_431|>' is not marked as EOG
load: control token: 353 '<|reserved_343|>' is not marked as EOG
load: control token: 230 '<|reserved_220|>' is not marked as EOG
load: control token: 376 '<|reserved_366|>' is not marked as EOG
load: control token: 411 '<|reserved_401|>' is not marked as EOG
load: control token: 155 '<|reserved_145|>' is not marked as EOG
load: control token: 105 '<|reserved_95|>' is not marked as EOG
load: control token: 126 '<|reserved_116|>' is not marked as EOG
load: control token: 368 '<|reserved_358|>' is not marked as EOG
load: control token: 166 '<|reserved_156|>' is not marked as EOG
load: control token: 51 '<|reserved_41|>' is not marked as EOG
load: control token: 371 '<|reserved_361|>' is not marked as EOG
load: control token: 372 '<|reserved_362|>' is not marked as EOG
load: control token: 453 '<|reserved_443|>' is not marked as EOG
load: control token: 285 '<|reserved_275|>' is not marked as EOG
load: control token: 72 '<|reserved_62|>' is not marked as EOG
load: control token: 383 '<|reserved_373|>' is not marked as EOG
load: control token: 347 '<|reserved_337|>' is not marked as EOG
load: control token: 436 '<|reserved_426|>' is not marked as EOG
load: control token: 115 '<|reserved_105|>' is not marked as EOG
load: control token: 476 '<|reserved_466|>' is not marked as EOG
load: control token: 355 '<|reserved_345|>' is not marked as EOG
load: control token: 459 '<|reserved_449|>' is not marked as EOG
load: control token: 231 '<|reserved_221|>' is not marked as EOG
load: control token: 142 '<|reserved_132|>' is not marked as EOG
load: control token: 485 '<|reserved_475|>' is not marked as EOG
load: control token: 445 '<|reserved_435|>' is not marked as EOG
load: control token: 489 '<|reserved_479|>' is not marked as EOG
load: control token: 344 '<|reserved_334|>' is not marked as EOG
load: control token: 24 '<|reserved_14|>' is not marked as EOG
load: control token: 237 '<|reserved_227|>' is not marked as EOG
load: control token: 84 '<|reserved_74|>' is not marked as EOG
load: control token: 164 '<|reserved_154|>' is not marked as EOG
load: control token: 327 '<|reserved_317|>' is not marked as EOG
load: control token: 335 '<|reserved_325|>' is not marked as EOG
load: control token: 102 '<|reserved_92|>' is not marked as EOG
load: control token: 98 '<|reserved_88|>' is not marked as EOG
load: control token: 41 '<|reserved_31|>' is not marked as EOG
load: control token: 481 '<|reserved_471|>' is not marked as EOG
load: control token: 254 '<|reserved_244|>' is not marked as EOG
load: control token: 95 '<|reserved_85|>' is not marked as EOG
load: control token: 467 '<|reserved_457|>' is not marked as EOG
load: control token: 128 '<|reserved_118|>' is not marked as EOG
load: control token: 224 '<|reserved_214|>' is not marked as EOG
load: control token: 330 '<|reserved_320|>' is not marked as EOG
load: control token: 68 '<|reserved_58|>' is not marked as EOG
load: control token: 151 '<|reserved_141|>' is not marked as EOG
load: control token: 350 '<|reserved_340|>' is not marked as EOG
load: control token: 402 '<|reserved_392|>' is not marked as EOG
load: control token: 306 '<|reserved_296|>' is not marked as EOG
load: control token: 365 '<|reserved_355|>' is not marked as EOG
load: control token: 477 '<|reserved_467|>' is not marked as EOG
load: control token: 266 '<|reserved_256|>' is not marked as EOG
load: control token: 486 '<|reserved_476|>' is not marked as EOG
load: control token: 33 '<|reserved_23|>' is not marked as EOG
load: control token: 345 '<|reserved_335|>' is not marked as EOG
load: control token: 34 '<|reserved_24|>' is not marked as EOG
load: control token: 30 '<|reserved_20|>' is not marked as EOG
load: control token: 367 '<|reserved_357|>' is not marked as EOG
load: control token: 403 '<|reserved_393|>' is not marked as EOG
load: control token: 245 '<|reserved_235|>' is not marked as EOG
load: control token: 193 '<|reserved_183|>' is not marked as EOG
load: control token: 321 '<|reserved_311|>' is not marked as EOG
load: control token: 301 '<|reserved_291|>' is not marked as EOG
load: control token: 320 '<|reserved_310|>' is not marked as EOG
load: control token: 246 '<|reserved_236|>' is not marked as EOG
load: control token: 405 '<|reserved_395|>' is not marked as EOG
load: control token: 337 '<|reserved_327|>' is not marked as EOG
load: control token: 13 '<|tool_response_end|>' is not marked as EOG
load: control token: 414 '<|reserved_404|>' is not marked as EOG
load: control token: 215 '<|reserved_205|>' is not marked as EOG
load: control token: 356 '<|reserved_346|>' is not marked as EOG
load: control token: 159 '<|reserved_149|>' is not marked as EOG
load: control token: 377 '<|reserved_367|>' is not marked as EOG
load: control token: 494 '<|reserved_484|>' is not marked as EOG
load: control token: 216 '<|reserved_206|>' is not marked as EOG
load: control token: 144 '<|reserved_134|>' is not marked as EOG
load: control token: 288 '<|reserved_278|>' is not marked as EOG
load: control token: 162 '<|reserved_152|>' is not marked as EOG
load: control token: 238 '<|reserved_228|>' is not marked as EOG
load: control token: 374 '<|reserved_364|>' is not marked as EOG
load: control token: 63 '<|reserved_53|>' is not marked as EOG
load: control token: 420 '<|reserved_410|>' is not marked as EOG
load: control token: 482 '<|reserved_472|>' is not marked as EOG
load: control token: 214 '<|reserved_204|>' is not marked as EOG
load: control token: 417 '<|reserved_407|>' is not marked as EOG
load: control token: 39 '<|reserved_29|>' is not marked as EOG
load: control token: 425 '<|reserved_415|>' is not marked as EOG
load: control token: 77 '<|reserved_67|>' is not marked as EOG
load: control token: 94 '<|reserved_84|>' is not marked as EOG
load: control token: 50 '<|reserved_40|>' is not marked as EOG
load: control token: 319 '<|reserved_309|>' is not marked as EOG
load: control token: 171 '<|reserved_161|>' is not marked as EOG
load: control token: 318 '<|reserved_308|>' is not marked as EOG
load: control token: 44 '<|reserved_34|>' is not marked as EOG
load: control token: 207 '<|reserved_197|>' is not marked as EOG
load: control token: 274 '<|reserved_264|>' is not marked as EOG
load: control token: 120 '<|reserved_110|>' is not marked as EOG
load: control token: 106 '<|reserved_96|>' is not marked as EOG
load: control token: 28 '<|reserved_18|>' is not marked as EOG
load: control token: 18 '<|reserved_8|>' is not marked as EOG
load: control token: 465 '<|reserved_455|>' is not marked as EOG
load: control token: 109 '<|reserved_99|>' is not marked as EOG
load: control token: 474 '<|reserved_464|>' is not marked as EOG
load: control token: 379 '<|reserved_369|>' is not marked as EOG
load: control token: 17 '<|reserved_7|>' is not marked as EOG
load: control token: 464 '<|reserved_454|>' is not marked as EOG
load: control token: 307 '<|reserved_297|>' is not marked as EOG
load: control token: 310 '<|reserved_300|>' is not marked as EOG
load: control token: 187 '<|reserved_177|>' is not marked as EOG
load: control token: 125 '<|reserved_115|>' is not marked as EOG
load: control token: 336 '<|reserved_326|>' is not marked as EOG
load: control token: 410 '<|reserved_400|>' is not marked as EOG
load: control token: 154 '<|reserved_144|>' is not marked as EOG
load: control token: 180 '<|reserved_170|>' is not marked as EOG
load: control token: 53 '<|reserved_43|>' is not marked as EOG
load: control token: 22 '<|reserved_12|>' is not marked as EOG
load: control token: 147 '<|reserved_137|>' is not marked as EOG
load: control token: 172 '<|reserved_162|>' is not marked as EOG
load: control token: 454 '<|reserved_444|>' is not marked as EOG
load: control token: 292 '<|reserved_282|>' is not marked as EOG
load: control token: 234 '<|reserved_224|>' is not marked as EOG
load: control token: 55 '<|reserved_45|>' is not marked as EOG
load: control token: 407 '<|reserved_397|>' is not marked as EOG
load: control token: 152 '<|reserved_142|>' is not marked as EOG
load: control token: 189 '<|reserved_179|>' is not marked as EOG
load: control token: 198 '<|reserved_188|>' is not marked as EOG
load: control token: 61 '<|reserved_51|>' is not marked as EOG
load: control token: 456 '<|reserved_446|>' is not marked as EOG
load: control token: 305 '<|reserved_295|>' is not marked as EOG
load: control token: 160 '<|reserved_150|>' is not marked as EOG
load: control token: 378 '<|reserved_368|>' is not marked as EOG
load: control token: 404 '<|reserved_394|>' is not marked as EOG
load: control token: 232 '<|reserved_222|>' is not marked as EOG
load: control token: 348 '<|reserved_338|>' is not marked as EOG
load: control token: 419 '<|reserved_409|>' is not marked as EOG
load: control token: 287 '<|reserved_277|>' is not marked as EOG
load: control token: 86 '<|reserved_76|>' is not marked as EOG
load: control token: 58 '<|reserved_48|>' is not marked as EOG
load: control token: 183 '<|reserved_173|>' is not marked as EOG
load: control token: 369 '<|reserved_359|>' is not marked as EOG
load: control token: 210 '<|reserved_200|>' is not marked as EOG
load: control token: 434 '<|reserved_424|>' is not marked as EOG
load: control token: 323 '<|reserved_313|>' is not marked as EOG
load: control token: 268 '<|reserved_258|>' is not marked as EOG
load: control token: 197 '<|reserved_187|>' is not marked as EOG
load: control token: 184 '<|reserved_174|>' is not marked as EOG
load: control token: 325 '<|reserved_315|>' is not marked as EOG
load: control token: 138 '<|reserved_128|>' is not marked as EOG
load: control token: 473 '<|reserved_463|>' is not marked as EOG
load: control token: 150 '<|reserved_140|>' is not marked as EOG
load: control token: 176 '<|reserved_166|>' is not marked as EOG
load: control token: 280 '<|reserved_270|>' is not marked as EOG
load: control token: 294 '<|reserved_284|>' is not marked as EOG
load: control token: 194 '<|reserved_184|>' is not marked as EOG
load: control token: 163 '<|reserved_153|>' is not marked as EOG
load: control token: 88 '<|reserved_78|>' is not marked as EOG
load: control token: 104 '<|reserved_94|>' is not marked as EOG
load: control token: 139 '<|reserved_129|>' is not marked as EOG
load: control token: 211 '<|reserved_201|>' is not marked as EOG
load: control token: 129 '<|reserved_119|>' is not marked as EOG
load: control token: 495 '<|reserved_485|>' is not marked as EOG
load: control token: 213 '<|reserved_203|>' is not marked as EOG
load: control token: 251 '<|reserved_241|>' is not marked as EOG
load: control token: 1 '<|startoftext|>' is not marked as EOG
load: control token: 478 '<|reserved_468|>' is not marked as EOG
load: control token: 304 '<|reserved_294|>' is not marked as EOG
load: control token: 391 '<|reserved_381|>' is not marked as EOG
load: control token: 421 '<|reserved_411|>' is not marked as EOG
load: control token: 490 '<|reserved_480|>' is not marked as EOG
load: control token: 352 '<|reserved_342|>' is not marked as EOG
load: control token: 386 '<|reserved_376|>' is not marked as EOG
load: control token: 458 '<|reserved_448|>' is not marked as EOG
load: control token: 308 '<|reserved_298|>' is not marked as EOG
load: control token: 267 '<|reserved_257|>' is not marked as EOG
load: control token: 97 '<|reserved_87|>' is not marked as EOG
load: control token: 76 '<|reserved_66|>' is not marked as EOG
load: control token: 447 '<|reserved_437|>' is not marked as EOG
load: control token: 117 '<|reserved_107|>' is not marked as EOG
load: control token: 191 '<|reserved_181|>' is not marked as EOG
load: control token: 75 '<|reserved_65|>' is not marked as EOG
load: control token: 413 '<|reserved_403|>' is not marked as EOG
load: control token: 20 '<|reserved_10|>' is not marked as EOG
load: control token: 366 '<|reserved_356|>' is not marked as EOG
load: control token: 247 '<|reserved_237|>' is not marked as EOG
load: control token: 89 '<|reserved_79|>' is not marked as EOG
load: control token: 333 '<|reserved_323|>' is not marked as EOG
load: control token: 174 '<|reserved_164|>' is not marked as EOG
load: control token: 212 '<|reserved_202|>' is not marked as EOG
load: control token: 4 '<|fim_mid|>' is not marked as EOG
load: control token: 324 '<|reserved_314|>' is not marked as EOG
load: control token: 334 '<|reserved_324|>' is not marked as EOG
load: control token: 208 '<|reserved_198|>' is not marked as EOG
load: control token: 168 '<|reserved_158|>' is not marked as EOG
load: control token: 16 '<|reserved_6|>' is not marked as EOG
load: control token: 329 '<|reserved_319|>' is not marked as EOG
load: control token: 364 '<|reserved_354|>' is not marked as EOG
load: control token: 62 '<|reserved_52|>' is not marked as EOG
load: control token: 338 '<|reserved_328|>' is not marked as EOG
load: control token: 110 '<|reserved_100|>' is not marked as EOG
load: control token: 433 '<|reserved_423|>' is not marked as EOG
load: control token: 32 '<|reserved_22|>' is not marked as EOG
load: control token: 452 '<|reserved_442|>' is not marked as EOG
load: control token: 148 '<|reserved_138|>' is not marked as EOG
load: control token: 331 '<|reserved_321|>' is not marked as EOG
load: control token: 469 '<|reserved_459|>' is not marked as EOG
load: control token: 375 '<|reserved_365|>' is not marked as EOG
load: control token: 252 '<|reserved_242|>' is not marked as EOG
load: control token: 67 '<|reserved_57|>' is not marked as EOG
load: control token: 389 '<|reserved_379|>' is not marked as EOG
load: control token: 93 '<|reserved_83|>' is not marked as EOG
load: control token: 40 '<|reserved_30|>' is not marked as EOG
load: control token: 479 '<|reserved_469|>' is not marked as EOG
load: control token: 395 '<|reserved_385|>' is not marked as EOG
load: control token: 0 '<|pad|>' is not marked as EOG
load: printing all EOG tokens:
load: - 2 ('<|endoftext|>')
load: - 7 ('<|im_end|>')
load: special tokens cache size = 507
load: token to piece cache size = 0.3756 MB
print_info: arch = lfm2
print_info: vocab_only = 0
print_info: no_alloc = 0
print_info: n_ctx_train = 128000
print_info: n_embd = 512
print_info: n_embd_inp = 512
print_info: n_layer = 8
print_info: n_head = 16
print_info: n_head_kv = [0, 0, 8, 0, 8, 0, 8, 0]
print_info: n_rot = 32
print_info: n_swa = 30
print_info: is_swa_any = 1
print_info: n_embd_head_k = 32
print_info: n_embd_head_v = 32
print_info: n_gqa = [0, 0, 2, 0, 2, 0, 2, 0]
print_info: n_embd_k_gqa = [0, 0, 256, 0, 256, 0, 256, 0]
print_info: n_embd_v_gqa = [0, 0, 256, 0, 256, 0, 256, 0]
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 2304
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: freq_base_swa = 10000.0
print_info: freq_scale_swa = 1
print_info: n_ctx_orig_yarn = 128000
print_info: rope_yarn_log_mul = 0.0000
print_info: rope_finetuned = unknown
print_info: model type = ?B
print_info: model params = 70.14 M
print_info: general.name = Audio_Detokenizer
print_info: vocab type = BPE
print_info: n_vocab = 65536
print_info: n_merges = 63683
print_info: BOS token = 1 '<|startoftext|>'
print_info: EOS token = 7 '<|im_end|>'
print_info: EOT token = 2 '<|endoftext|>'
print_info: PAD token = 0 '<|pad|>'
print_info: LF token = 708 'Ċ'
print_info: EOG token = 2 '<|endoftext|>'
print_info: EOG token = 7 '<|im_end|>'
print_info: max token length = 30
load_tensors: loading model tensors, this can take a while... (mmap = false, direct_io = true)
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6116608
load_tensors: layer 0 assigned to device CUDA0, is_swa = 0
load_tensors: layer 1 assigned to device CUDA0, is_swa = 0
load_tensors: layer 2 assigned to device CUDA0, is_swa = 1
load_tensors: layer 3 assigned to device CUDA0, is_swa = 0
load_tensors: layer 4 assigned to device CUDA0, is_swa = 1
load_tensors: layer 5 assigned to device CUDA0, is_swa = 0
load_tensors: layer 6 assigned to device CUDA0, is_swa = 1
load_tensors: layer 7 assigned to device CUDA0, is_swa = 0
load_tensors: layer 8 assigned to device CUDA0, is_swa = 0
create_tensor: loading tensor token_embd.weight
create_tensor: loading tensor token_embd_norm.weight
create_tensor: loading tensor token_embd.weight
create_tensor: loading tensor blk.0.ffn_norm.weight
create_tensor: loading tensor blk.0.ffn_gate.weight
create_tensor: loading tensor blk.0.ffn_down.weight
create_tensor: loading tensor blk.0.ffn_up.weight
create_tensor: loading tensor blk.0.attn_norm.weight
create_tensor: loading tensor blk.0.shortconv.conv.weight
create_tensor: loading tensor blk.0.shortconv.in_proj.weight
create_tensor: loading tensor blk.0.shortconv.out_proj.weight
create_tensor: loading tensor blk.1.ffn_norm.weight
create_tensor: loading tensor blk.1.ffn_gate.weight
create_tensor: loading tensor blk.1.ffn_down.weight
create_tensor: loading tensor blk.1.ffn_up.weight
create_tensor: loading tensor blk.1.attn_norm.weight
create_tensor: loading tensor blk.1.shortconv.conv.weight
create_tensor: loading tensor blk.1.shortconv.in_proj.weight
create_tensor: loading tensor blk.1.shortconv.out_proj.weight
create_tensor: loading tensor blk.2.ffn_norm.weight
create_tensor: loading tensor blk.2.ffn_gate.weight
create_tensor: loading tensor blk.2.ffn_down.weight
create_tensor: loading tensor blk.2.ffn_up.weight
create_tensor: loading tensor blk.2.attn_norm.weight
create_tensor: loading tensor blk.2.attn_q_norm.weight
create_tensor: loading tensor blk.2.attn_k_norm.weight
create_tensor: loading tensor blk.2.attn_q.weight
create_tensor: loading tensor blk.2.attn_k.weight
create_tensor: loading tensor blk.2.attn_v.weight
create_tensor: loading tensor blk.2.attn_output.weight
create_tensor: loading tensor blk.3.ffn_norm.weight
create_tensor: loading tensor blk.3.ffn_gate.weight
create_tensor: loading tensor blk.3.ffn_down.weight
create_tensor: loading tensor blk.3.ffn_up.weight
create_tensor: loading tensor blk.3.attn_norm.weight
create_tensor: loading tensor blk.3.shortconv.conv.weight
create_tensor: loading tensor blk.3.shortconv.in_proj.weight
create_tensor: loading tensor blk.3.shortconv.out_proj.weight
create_tensor: loading tensor blk.4.ffn_norm.weight
create_tensor: loading tensor blk.4.ffn_gate.weight
create_tensor: loading tensor blk.4.ffn_down.weight
create_tensor: loading tensor blk.4.ffn_up.weight
create_tensor: loading tensor blk.4.attn_norm.weight
create_tensor: loading tensor blk.4.attn_q_norm.weight
create_tensor: loading tensor blk.4.attn_k_norm.weight
create_tensor: loading tensor blk.4.attn_q.weight
create_tensor: loading tensor blk.4.attn_k.weight
create_tensor: loading tensor blk.4.attn_v.weight
create_tensor: loading tensor blk.4.attn_output.weight
create_tensor: loading tensor blk.5.ffn_norm.weight
create_tensor: loading tensor blk.5.ffn_gate.weight
create_tensor: loading tensor blk.5.ffn_down.weight
create_tensor: loading tensor blk.5.ffn_up.weight
create_tensor: loading tensor blk.5.attn_norm.weight
create_tensor: loading tensor blk.5.shortconv.conv.weight
create_tensor: loading tensor blk.5.shortconv.in_proj.weight
create_tensor: loading tensor blk.5.shortconv.out_proj.weight
create_tensor: loading tensor blk.6.ffn_norm.weight
create_tensor: loading tensor blk.6.ffn_gate.weight
create_tensor: loading tensor blk.6.ffn_down.weight
create_tensor: loading tensor blk.6.ffn_up.weight
create_tensor: loading tensor blk.6.attn_norm.weight
create_tensor: loading tensor blk.6.attn_q_norm.weight
create_tensor: loading tensor blk.6.attn_k_norm.weight
create_tensor: loading tensor blk.6.attn_q.weight
create_tensor: loading tensor blk.6.attn_k.weight
create_tensor: loading tensor blk.6.attn_v.weight
create_tensor: loading tensor blk.6.attn_output.weight
create_tensor: loading tensor blk.7.ffn_norm.weight
create_tensor: loading tensor blk.7.ffn_gate.weight
create_tensor: loading tensor blk.7.ffn_down.weight
create_tensor: loading tensor blk.7.ffn_up.weight
create_tensor: loading tensor blk.7.attn_norm.weight
create_tensor: loading tensor blk.7.shortconv.conv.weight
create_tensor: loading tensor blk.7.shortconv.in_proj.weight
create_tensor: loading tensor blk.7.shortconv.out_proj.weight
create_tensor: loading tensor dense_2.weight
create_tensor: loading tensor dense_2.bias
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 6116608
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 5978136
load_tensors: offloading output layer to GPU
load_tensors: offloading 7 repeating layers to GPU
load_tensors: offloaded 9/9 layers to GPU
load_tensors: CUDA0 model buffer size = 133.82 MiB
load_tensors: CUDA_Host model buffer size = 64.00 MiB
ggml_backend_cuda_get_available_uma_memory: final available_memory_kb: 5911608
load_all_data: using async uploads for device CUDA0, buffer type CUDA0, backend CUDA0
.................................load_all_data: buffer type CUDA_Host is not the default buffer type for device CUDA0 for async uploads
.
common_init_result: added <|endoftext|> logit bias = -inf
common_init_result: added <|im_end|> logit bias = -inf
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 128000
llama_context: n_ctx_seq = 128000
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
set_abort_callback: call
llama_context: CUDA_Host output buffer size = 0.25 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 128000 cells
llama_kv_cache: layer 0: filtered
llama_kv_cache: layer 1: filtered
llama_kv_cache: layer 2: filtered
llama_kv_cache: layer 3: filtered
llama_kv_cache: layer 4: filtered
llama_kv_cache: layer 5: filtered
llama_kv_cache: layer 6: filtered
llama_kv_cache: layer 7: filtered
llama_kv_cache: size = 0.00 MiB (128000 cells, 0 layers, 1/1 seqs), K (f16): 0.00 MiB, V (f16): 0.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 768 cells
llama_kv_cache: layer 0: filtered
llama_kv_cache: layer 1: filtered
llama_kv_cache: layer 2: dev = CUDA0
llama_kv_cache: layer 3: filtered
llama_kv_cache: layer 4: dev = CUDA0
llama_kv_cache: layer 5: filtered
llama_kv_cache: layer 6: dev = CUDA0
llama_kv_cache: layer 7: filtered
llama_kv_cache: CUDA0 KV buffer size = 2.25 MiB
llama_kv_cache: size = 2.25 MiB ( 768 cells, 3 layers, 1/1 seqs), K (f16): 1.12 MiB, V (f16): 1.12 MiB
llama_memory_recurrent, layer 0: dev = CUDA0
llama_memory_recurrent, layer 1: dev = CUDA0
llama_memory_recurrent: layer 2: skipped
llama_memory_recurrent, layer 3: dev = CUDA0
llama_memory_recurrent: layer 4: skipped
llama_memory_recurrent, layer 5: dev = CUDA0
llama_memory_recurrent: layer 6: skipped
llama_memory_recurrent, layer 7: dev = CUDA0
llama_memory_recurrent: CUDA0 RS buffer size = 0.02 MiB
llama_memory_recurrent: size = 0.02 MiB ( 1 cells, 8 layers, 1 seqs), R (f32): 0.02 MiB, S (f32): 0.00 MiB
llama_context: enumerating backends
llama_context: backend_ptrs.size() = 3
sched_reserve: reserving ...
sched_reserve: max_nodes = 1024
sched_reserve: reserving full memory module
sched_reserve: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 1
graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1
sched_reserve: layer 2 is assigned to device CUDA0 but the Flash Attention tensor is assigned to device CPU (usually due to missing support)
sched_reserve: Flash Attention was auto, set to disabled
graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512
graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1
graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512
sched_reserve: CUDA0 compute buffer size = 132.50 MiB
sched_reserve: CUDA_Host compute buffer size = 2.51 MiB
sched_reserve: graph nodes = 295
sched_reserve: graph splits = 2
sched_reserve: reserve took 26.31 ms, sched copies = 1
clear_adapter_lora: call
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
set_warmup: value = 1
set_warmup: value = 0
attach_threadpool: call
mtmd_context: audio decoder initialized
Model loaded successfully!
Starting HTTP server on 127.0.0.1:8086
Server ready at http://127.0.0.1:8086
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
common_chat_params_init_lfm2: Prompt: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user
<media><|im_end|>
<|im_start|>assistant

add_text: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user

formatted_chat.prompt: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user
<media><|im_end|>
<|im_start|>assistant

audio_tokens->n_tokens = 24
add_text: <|im_end|>
<|im_start|>assistant

encoding audio slice...
audio slice encoded in 433 ms
decoding audio batch 1/1, n_tokens_batch = 24
audio decoded (batch 1/1) in 7 ms

Iset_embeddings: value = 0
wantset_embeddings: value = 0
youset_embeddings: value = 0
.set_embeddings: value = 0

llama_perf_context_print: load time = 21696.55 ms
llama_perf_context_print: prompt eval time = 606.41 ms / 43 tokens ( 14.10 ms per token, 70.91 tokens per second)
llama_perf_context_print: eval time = 67.18 ms / 4 runs ( 16.79 ms per token, 59.54 tokens per second)
llama_perf_context_print: total time = 703.43 ms / 47 tokens
llama_perf_context_print: graphs reused = 3
audio samples per second: nan
text tokens per second: 76.9
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
common_chat_params_init_lfm2: Prompt: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
I'm here to help. What can I do for you?<|im_end|>
<|im_start|>assistant

formatted_chat.prompt: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
I'm here to help. What can I do for you?<|im_end|>
<|im_start|>assistant

add_text: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
I'm here to help. What can I do for you?<|im_end|>
<|im_start|>assistant

<|audio_start|>set_embeddings: value = 1
record_update: disabling CUDA graphs due to too many consecutive updates
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 0

llama_perf_context_print: load time = 21696.55 ms
llama_perf_context_print: prompt eval time = 20.56 ms / 38 tokens ( 0.54 ms per token, 1848.61 tokens per second)
llama_perf_context_print: eval time = 611.24 ms / 39 runs ( 15.67 ms per token, 63.80 tokens per second)
llama_perf_context_print: total time = 1677.03 ms / 77 tokens
llama_perf_context_print: graphs reused = 36
audio samples per second: 52461.0
text tokens per second: inf
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
common_chat_params_init_lfm2: Prompt: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user
<media><|im_end|>
<|im_start|>assistant

add_text: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user

formatted_chat.prompt: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user
<media><|im_end|>
<|im_start|>assistant

audio_tokens->n_tokens = 37
add_text: <|im_end|>
<|im_start|>assistant

encoding audio slice...
audio slice encoded in 334 ms
decoding audio batch 1/1, n_tokens_batch = 37
audio decoded (batch 1/1) in 3 ms

Gset_embeddings: value = 0
ladset_embeddings: value = 0
toset_embeddings: value = 0
havingset_embeddings: value = 0
youset_embeddings: value = 0
hereset_embeddings: value = 0
.set_embeddings: value = 0

llama_perf_context_print: load time = 21696.55 ms
llama_perf_context_print: prompt eval time = 369.82 ms / 56 tokens ( 6.60 ms per token, 151.43 tokens per second)
llama_perf_context_print: eval time = 115.32 ms / 7 runs ( 16.47 ms per token, 60.70 tokens per second)
llama_perf_context_print: total time = 492.06 ms / 63 tokens
llama_perf_context_print: graphs reused = 6
audio samples per second: nan
text tokens per second: 70.0
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
common_chat_params_init_lfm2: Prompt: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
Thank you for having me! How can I assist you today?<|im_end|>
<|im_start|>assistant

add_text: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
Thank you for having me! How can I assist you today?<|im_end|>
<|im_start|>assistant

formatted_chat.prompt: <|im_start|>system
Perform TTS. Use the US female voice.<|im_end|>
<|im_start|>user
Thank you for having me! How can I assist you today?<|im_end|>
<|im_start|>assistant

<|audio_start|>set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 1
set_embeddings: value = 0

llama_perf_context_print: load time = 21696.55 ms
llama_perf_context_print: prompt eval time = 20.44 ms / 38 tokens ( 0.54 ms per token, 1859.10 tokens per second)
llama_perf_context_print: eval time = 740.22 ms / 46 runs ( 16.09 ms per token, 62.14 tokens per second)
llama_perf_context_print: total time = 1675.77 ms / 84 tokens
llama_perf_context_print: graphs reused = 43
audio samples per second: 52532.8
text tokens per second: inf
Resetting model context
common_chat_params_init_lfm2: Using content relying on the template
common_chat_params_init_lfm2: Prompt: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user
<media><|im_end|>
<|im_start|>assistant

add_text: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user

formatted_chat.prompt: <|im_start|>system
Perform ASR.<|im_end|>
<|im_start|>user
<media><|im_end|>
<|im_start|>assistant

audio_tokens->n_tokens = 31
add_text: <|im_end|>
<|im_start|>assistant

encoding audio slice...
audio slice encoded in 34 ms
decoding audio batch 1/1, n_tokens_batch = 31
audio decoded (batch 1/1) in 4 ms

Doset_embeddings: value = 0
youset_embeddings: value = 0
knowset_embeddings: value = 0
aboutset_embeddings: value = 0
mathset_embeddings: value = 0
?set_embeddings: value = 0

llama_perf_context_print: load time = 21696.55 ms
llama_perf_context_print: prompt eval time = 69.98 ms / 50 tokens ( 1.40 ms per token, 714.46 tokens per second)
llama_perf_context_print: eval time = 98.76 ms / 6 runs ( 16.46 ms per token, 60.75 tokens per second)
llama_perf_context_print: total time = 174.84 ms / 56 tokens
llama_perf_context_print: graphs reused = 5
audio samples per second: nan
text tokens per second: 72.3
terminate called after throwing an instance of 'std::system_error'
what(): Resource deadlock avoided

</details>

TimPietruskyRunPod pushed a commit to runpod-workers/openclaw2go-llamacpp that referenced this pull request Feb 14, 2026
squash-merge of ggml-org/llama.cpp PR ggml-org#18641 onto main.
adds llama-liquid-audio-server and llama-liquid-audio-cli binaries
for text-to-speech and speech-to-text with LFM2.5 models.
TimPietruskyRunPod pushed a commit to runpod-workers/openclaw2go-llamacpp that referenced this pull request Feb 14, 2026
checks daily for new llama.cpp releases.
auto-rebases cherry-picks (audio ggml-org#18641, outetss ggml-org#12794, eagle-3 ggml-org#18039).
creates tagged release on clean rebase, PR on conflicts.
PR ggml-org#19460 (GLM-5 DSA) already merged upstream, not in cherry-pick list.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

examples model Model specific python python script changes server

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants