Skip to content
Merged
Show file tree
Hide file tree
Changes from 32 commits
Commits
Show all changes
37 commits
Select commit Hold shift + click to select a range
0625382
model: add support for extra bufs for all devices
max-krasnyansky Jul 16, 2025
80dc8e8
hexagon: add experimental ggml-hexagon backend for the Hexagon NPU
max-krasnyansky Jun 23, 2025
ec4436f
hexagon: fix format checker errors
max-krasnyansky Oct 13, 2025
aa65f21
hexagon: update readme and cmake presets
max-krasnyansky Oct 14, 2025
647fa3d
ci: add android-ndk-build jobs that build plain ARM64 and Snapdragon …
max-krasnyansky Oct 15, 2025
da7caac
hexagon: add simple graph optimizer for stacking MUL_MAT ops with the…
max-krasnyansky Oct 14, 2025
bbbc8ea
hexagon: move ADB helper scripts into scripts/snapdragon/adb
max-krasnyansky Oct 15, 2025
cc7dbd4
hexagon: replace all f/printfs with GGML_LOG_...
max-krasnyansky Oct 16, 2025
69a8047
readme: add hexagon to the list supported backends
max-krasnyansky Oct 16, 2025
debdb3b
hexagon: stack malmuts with quantized inputs only
max-krasnyansky Oct 16, 2025
3475e29
hexagon: add TODO for fixing issues in hexagon_graph_optimize
max-krasnyansky Oct 17, 2025
1e750df
hexagon: update to hex-sdk 6.4.0 and add scripts for running on QDC
max-krasnyansky Oct 17, 2025
8e7d8b5
scripts: fix lint errors
max-krasnyansky Oct 17, 2025
20aa689
scripts: update qdc pytest script to make linter happy
max-krasnyansky Oct 17, 2025
03e2b9c
hexagon: add reduce sum in fp32
max-krasnyansky Oct 18, 2025
384164d
hexagon: reduce number of vector stores in matmul output
max-krasnyansky Oct 18, 2025
a314eb6
hexagon: remove the need for vdelta in reduce-multiply-x8
max-krasnyansky Oct 18, 2025
7f2d00b
hexagon: consistent use of reduce_sum_fp32 for row_sums
max-krasnyansky Oct 19, 2025
5de19f8
hexagon: some more matmul optimizations and comments
max-krasnyansky Oct 19, 2025
cf0242e
hexagon: update cmake presets
max-krasnyansky Oct 21, 2025
250e3a6
hexagon: add OPMASK support for run-bench.sh wrapper
max-krasnyansky Oct 21, 2025
08a97e6
hexagon: update to use GGML_BACKEND_API
max-krasnyansky Oct 21, 2025
6d2d0bd
hexagon: remove unused logic for setting tensor flags for the views
max-krasnyansky Oct 21, 2025
18d7d20
hexagon: add asserts to set/get_tensor to make sure we handle complet…
max-krasnyansky Oct 21, 2025
26a90a0
hexagon: use cpy_tensor slow path for non-host buffers
max-krasnyansky Oct 21, 2025
a8e5ad8
hexagon: error checks in the buffer allocator
max-krasnyansky Oct 21, 2025
dc001b9
cmake: move include(extProj) under ggml-hexagon
max-krasnyansky Oct 21, 2025
c749b86
hexagon: don't forget to delete the backend on free
max-krasnyansky Oct 22, 2025
0c01229
hexagon: set/get_tensor size assert apply only to quantized tensors
max-krasnyansky Oct 22, 2025
62ef4eb
hexagon: reintroduce HEX_VERBOSE wrapper for GGML_LOG_DEBUG for now
max-krasnyansky Oct 22, 2025
19041f7
docs: typos in hexagon developer docs (libggm-...)
max-krasnyansky Oct 22, 2025
3e4ff73
hexagon: overhaul error handling in the session/device allocation
max-krasnyansky Oct 22, 2025
6acc285
hexagon: update cmake presets to enable fp16 vectors
max-krasnyansky Oct 22, 2025
dda466c
hexagon: remove unused time_usec function
max-krasnyansky Oct 22, 2025
b0e5beb
hexagon: don't forget to release buffer contexts
max-krasnyansky Oct 22, 2025
3049de5
hexagon: fixed indents in hvx-utils (missed clang-format auto-format …
max-krasnyansky Oct 22, 2025
f7d7411
hexagon: remove custom can_repeat function and use ggml_can_repeat
max-krasnyansky Oct 22, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 75 additions & 0 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -1305,6 +1305,81 @@ jobs:
cd examples/llama.android
./gradlew build --no-daemon

android-ndk-build:
runs-on: ubuntu-latest

env:
OPENCL_VERSION: 2025.07.22

strategy:
matrix:
include:
- build: 'arm64-cpu'
defines: '-D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF -D GGML_OPENMP=OFF'
- build: 'arm64-snapdragon'
defines: '--preset arm64-android-snapdragon-release'

steps:
- name: Clone
id: checkout
uses: actions/checkout@v4

- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
mkdir opencl
curl -L -o opencl/clhpp.tar.gz https://github.com/KhronosGroup/OpenCL-CLHPP/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
curl -L -o opencl/headers.tar.gz https://github.com/KhronosGroup/OpenCL-Headers/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
curl -L -o opencl/icd-loader.tar.gz https://github.com/KhronosGroup/OpenCL-ICD-Loader/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
tar -xaf opencl/headers.tar.gz -C opencl
tar -xaf opencl/clhpp.tar.gz -C opencl
tar -xaf opencl/icd-loader.tar.gz -C opencl
sudo cp -r opencl/OpenCL-Headers-${OPENCL_VERSION}/CL ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
sudo cp -r opencl/OpenCL-CLHPP-${OPENCL_VERSION}/include/CL/* ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/CL
cd opencl/OpenCL-ICD-Loader-${OPENCL_VERSION}
cmake -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -DOPENCL_ICD_LOADER_HEADERS_DIR=${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=31 -DANDROID_STL=c++_shared
cmake --build build
sudo cp build/libOpenCL.so ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
rm -rf opencl

- name: Install Hexagon SDK
id: install_hexsdk
if: ${{ matrix.build == 'arm64-snapdragon' }}
env:
HEXSDK_VER: 6.4.0.2
HEXTLS_VER: 19.0.04
run: |
curl -L -o hex-sdk.tar.gz https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v$HEXSDK_VER/hexagon-sdk-v$HEXSDK_VER-amd64-lnx.tar.xz
mkdir hex-sdk
tar -xaf hex-sdk.tar.gz -C hex-sdk
ls -l hex-sdk
sudo mv hex-sdk /opt/hexagon
echo "HEXAGON_SDK_ROOT=/opt/hexagon/$HEXSDK_VER" >> "$GITHUB_ENV"
echo "HEXAGON_TOOLS_ROOT=/opt/hexagon/$HEXSDK_VER/tools/HEXAGON_Tools/$HEXTLS_VER" >> "$GITHUB_ENV"
echo "DEFAULT_HLOS_ARCH=64" >> "$GITHUB_ENV"
echo "DEFAULT_TOOLS_VARIANT=toolv19" >> "$GITHUB_ENV"
echo "DEFAULT_NO_QURT_INC=0" >> "$GITHUB_ENV"
echo "DEFAULT_DSP_ARCH=v73" >> "$GITHUB_ENV"

- name: Update CMake presets
id: update_presets
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
cp docs/backend/hexagon/CMakeUserPresets.json .

- name: Build
id: ndk_build
run: |
cmake ${{ matrix.defines }} -B build
cmake --build build
cmake --install build --prefix pkg-adb/llama.cpp

- name: Test
id: cmake_test
run: |
echo "FIXME: test on devices"

openEuler-latest-cmake-cann:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
Expand Down
1 change: 1 addition & 0 deletions CODEOWNERS
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
Expand Down
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -280,6 +280,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |

## Obtaining and quantizing models

Expand Down
49 changes: 49 additions & 0 deletions docs/backend/hexagon/CMakeUserPresets.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
{
"version": 4,
"configurePresets": [
{
"name": "arm64-android-snapdragon",
"hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"cacheVariables": {
"ANDROID_ABI": "arm64-v8a",
"ANDROID_PLATFORM": "android-31",
"CMAKE_TOOLCHAIN_FILE": "$env{ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake",
"CMAKE_C_FLAGS": "-march=armv8.7a -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_CXX_FLAGS": "-march=armv8.7a -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "android_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},

{
"name": "arm64-windows-snapdragon",
"inherits": [ "base", "arm64-windows-llvm" ],
"cacheVariables": {
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "windows_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},

{ "name": "arm64-android-snapdragon-debug" , "inherits": [ "base", "arm64-android-snapdragon", "debug" ] },
{ "name": "arm64-android-snapdragon-release", "inherits": [ "base", "arm64-android-snapdragon", "release" ] },

{ "name": "arm64-windows-snapdragon-debug" , "inherits": [ "base", "arm64-windows-snapdragon", "debug" ] },
{ "name": "arm64-windows-snapdragon-release", "inherits": [ "base", "arm64-windows-snapdragon", "release" ] }
]
}
239 changes: 239 additions & 0 deletions docs/backend/hexagon/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
# Snapdragon-based Android devices

## How to Build

The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.

This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop.

```
~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3
[d]/> cd /workspace
```

The rest of the Android build process assumes that you're running inside the toolchain container.
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:

```
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .

[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
Preset CMake variables:
ANDROID_ABI="arm64-v8a"
...
CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake"
GGML_HEXAGON="ON"
GGML_OPENCL="ON"
GGML_OPENMP="OFF"
HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2"
...
-- Including OpenCL backend
-- Including Hexagon backend
...
-- Build files have been written to: /workspace/build-snapdragon

[d]/workspace> cmake --build build-snapdragon
...
[144/356] Performing build step for 'htp-v73'
[1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h
[2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj
[3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj
[4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj
...
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so
...
```

To generate an installable "package" simply use cmake --install:

```
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
-- Install configuration: "Release"
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
...
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
...
```

## How to Install

For this step, your device needs to be configured for on-device development.
Please see https://developer.android.com/studio/debug/dev-options for details.

Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**

```
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
```

At this point, you should also install some models:

```
~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
...
2025-10-11 12:04:52 (10.7 MB/s) - ‘Llama-3.2-1B-Instruct-Q4_0.gguf’ saved [773025920/773025920]

~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
```

## How to Run

The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.

llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.

Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.

Here are some examples of running various llama.cpp tools via ADB.

Simple question for Llama-3.2-1B

```
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 225.49 MiB
load_tensors: HTP0 model buffer size = 0.26 MiB
load_tensors: HTP0-REPACK model buffer size = 504.00 MiB
...
I hope this helps you understand the world's most popular cookies! [end of text]
...
llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second)
llama_perf_context_print: load time = 617.94 ms
llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second)
llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second)
llama_perf_context_print: total time = 9454.92 ms / 486 tokens
llama_perf_context_print: graphs reused = 473
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 |
llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 |
```

Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices

```
~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v81
ggml-hex: allocating new session: HTP0
ggml-hex: allocating new session: HTP1
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 143.86 MiB
load_tensors: HTP1 model buffer size = 0.23 MiB
load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB
load_tensors: HTP0 model buffer size = 0.28 MiB
load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB
...
llama_context: CPU output buffer size = 0.19 MiB
llama_kv_cache: HTP1 KV buffer size = 238.00 MiB
llama_kv_cache: HTP0 KV buffer size = 306.00 MiB
llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB
llama_context: HTP0 compute buffer size = 15.00 MiB
llama_context: HTP1 compute buffer size = 15.00 MiB
llama_context: CPU compute buffer size = 24.56 MiB
...
llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second)
llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second)
llama_perf_context_print: total time = 7377.33 ms / 469 tokens
llama_perf_context_print: graphs reused = 255
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 |
llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 |
```

Op test for MUL_MAT

```
~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT
...
Backend 2/3: HTP0
Device description: Hexagon
Device memory: 2048 MB (2048 MB free)
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK

~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090
| model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s |
| ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 |

build: 6a8cf8914 (6733)
```

## Environment variables

- `GGML_HEXAGON_NDEV=1`
Controls the number of devices/sessions to allocate. The default is 1.
Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four.

- `GGML_HEXAGON_NHVX=0`
Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version).

- `GGML_HEXAGON_HOSTBUF=1`
Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers.
This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID).

- `GGML_HEXAGON_VERBOSE=1`
Enables verbose logging of Ops from the backend. Example output:

```
ggml-hex: HTP0 graph-compute n_nodes 2
ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1
ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3
ggml-hex: HTP0 graph-compute n_nodes 1
ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0
ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024
```

- `GGML_HEXAGON_PROFILE=1`
Generates a host-side profile for the ggml-hexagon Ops.

- `GGML_HEXAGON_OPMASK=0x0`
Allows enabling specific stages of the processing pipeline:

- `0x1` Enable Op Queue (i.e., queuing Ops into NPU)
- `0x2` Enable Dynamic Quantizer (if needed for the Op)
- `0x4` Enable Op Compute (MUL_MAT, etc.)

Examples:

`GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out
`GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest
`GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)
Loading
Loading