-
Notifications
You must be signed in to change notification settings - Fork 13.5k
ggml : fix more imatrix nan cases #11773
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -384,7 +384,7 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * | |
| float ax = fabsf(x[i]); | ||
| if (ax > amax) { amax = ax; max = x[i]; } | ||
| } | ||
| if (amax < GROUP_MAX_EPS) { // all zero | ||
| if (fabsf(amax) < GROUP_MAX_EPS) { // all zero | ||
| for (int i = 0; i < n; ++i) { | ||
| L[i] = 0; | ||
| } | ||
|
|
@@ -829,7 +829,7 @@ static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * | |
| for (int i = 0; i < n; ++i) { | ||
| max = MAX(max, x[i]); | ||
| } | ||
| if (!max) { // all zero | ||
| if (fabsf(max) < GROUP_MAX_EPS) { // all zero | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is the one line change which fixes the problem in #12439. The minimal fix I tried is the following: diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c
index ac918a60..aac8b120 100644
--- a/ggml/src/ggml-quants.c
+++ b/ggml/src/ggml-quants.c
@@ -829,7 +829,7 @@ static float make_qp_quants(int n, int nmax, const float * GGML_RESTRICT x, uint
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
- if (!max) { // all zero
+ if (max < GROUP_MAX_EPS) { // all zero
for (int i = 0; i < n; ++i) { L[i] = 0; }
return 0.f;
}The added The problem was caused by very small amplitudes of the model weights in the tensor Here are the contents of the problematic blocks>>> m["model.layers.42.self_attn.k_proj.weight"].reshape(-1, 256)[20].reshape(-1, 16)
tensor([[ 1.4400e-20, -4.8916e-20, 2.3505e-20, 5.9716e-20, 1.0122e-19,
6.1145e-21, 4.6163e-20, 7.0410e-21, -4.4681e-20, -2.0382e-21,
3.9387e-20, -1.4908e-19, -8.8515e-20, 5.8869e-20, 3.1552e-20,
-1.6080e-21],
[-1.8317e-20, -3.9387e-20, -2.3611e-20, 1.6411e-20, 4.0869e-20,
1.7682e-20, 3.1128e-20, -4.5528e-20, -1.6835e-20, -3.7693e-20,
-2.1705e-20, -4.0022e-20, 3.2161e-21, 6.0986e-20, -4.3410e-20,
3.7058e-20],
[-5.2940e-20, -6.5222e-20, 4.5528e-20, 6.6969e-21, 1.0853e-20,
1.4505e-20, -2.8376e-20, 3.0917e-20, 4.9340e-20, 1.0257e-21,
3.3246e-20, 3.1128e-20, -9.2750e-20, 2.5517e-20, -4.5952e-20,
-3.3881e-20],
[-2.7317e-20, 8.6821e-20, 3.4940e-20, -4.4469e-20, -2.8164e-20,
-2.9011e-20, -4.5740e-20, -2.5729e-20, -5.8445e-20, -7.6656e-20,
-4.3675e-21, -3.5787e-20, 1.2441e-20, -3.1896e-21, 4.8281e-20,
3.9599e-20],
[ 3.0281e-20, 4.5528e-20, 1.0164e-20, 4.3675e-21, -2.1705e-21,
1.0522e-21, 5.0610e-20, 2.0011e-20, -2.4670e-20, 1.4188e-20,
-6.0351e-21, 2.3823e-20, 1.9588e-20, 3.5787e-20, 6.6704e-21,
-5.5057e-20],
[ 8.2056e-21, -1.6411e-20, -6.0563e-20, 4.0532e-22, -3.2823e-20,
6.5645e-20, -7.6762e-21, 2.3611e-20, -1.9164e-20, 3.9387e-20,
3.9811e-20, -4.2521e-19, -3.5364e-20, -1.3500e-20, -2.9646e-20,
6.0563e-20],
[-3.7905e-20, -7.9198e-20, -5.9292e-20, -6.7763e-21, -3.0493e-20,
-1.6200e-20, 1.0800e-20, -1.8529e-20, -6.5645e-20, -2.2658e-20,
4.9975e-20, -2.2976e-20, -1.7258e-20, -5.0557e-21, -1.6941e-20,
1.0249e-19],
[-7.0939e-21, -1.6094e-20, 3.4093e-20, 5.3204e-21, 2.3399e-20,
-1.9905e-20, -1.9694e-20, 1.0482e-20, -5.9292e-20, 4.9763e-20,
-2.9858e-20, 5.5904e-20, 1.1435e-20, 3.7269e-20, -5.6116e-21,
4.9128e-20],
[-1.4400e-20, 1.6094e-20, -2.1176e-21, -1.0588e-20, -1.1488e-20,
1.4717e-20, -4.1505e-20, 2.1493e-20, 3.4940e-20, 1.2451e-19,
4.3940e-21, 6.4375e-20, -3.4517e-20, 5.5904e-20, -2.9911e-21,
-6.7339e-20],
[ 4.2775e-20, 4.4046e-20, -3.4093e-20, -2.3082e-20, -2.3399e-20,
4.1505e-20, 2.0541e-20, 3.2611e-20, 2.6258e-20, -4.5740e-20,
2.6682e-20, 1.5670e-20, -2.5517e-20, 5.4634e-20, -5.5481e-20,
1.6517e-19],
[ 1.6200e-20, -1.0588e-20, 8.2586e-21, 3.3458e-20, 4.5105e-20,
-1.4294e-20, -2.1705e-20, 3.9387e-20, -1.5776e-20, -3.5152e-20,
3.0705e-20, -7.0410e-21, -2.0646e-21, -1.4393e-22, -8.7668e-20,
3.4940e-20],
[ 6.7763e-20, 4.4893e-20, -5.2304e-20, 9.6138e-20, -9.8997e-21,
-3.3246e-20, -2.1282e-20, 3.9811e-20, 3.8540e-20, -1.5247e-20,
5.9028e-21, 3.3670e-20, 3.5999e-20, -2.6046e-20, 2.3929e-20,
-1.1858e-19],
[ 5.5904e-20, 2.4352e-20, 2.8460e-19, -1.8529e-21, -1.9588e-21,
2.9011e-20, -2.0858e-20, 7.7292e-21, -6.6492e-20, 3.7905e-20,
-2.7740e-20, 4.5740e-20, -3.1764e-20, 3.7481e-20, -2.6867e-21,
-1.7999e-20],
[-1.0641e-20, -3.8752e-20, 2.6073e-21, 3.6846e-20, 3.3484e-21,
-1.5776e-20, 1.7470e-20, 3.1340e-20, -5.3363e-20, 6.0616e-21,
-3.5205e-21, -3.4146e-21, -1.6094e-20, 1.1276e-20, -4.0863e-22,
-5.1881e-20],
[ 6.0616e-21, -2.3293e-20, -1.8846e-20, 3.5787e-20, -1.4929e-20,
-4.6799e-20, -1.0006e-20, -1.1911e-22, -2.0117e-20, -1.7258e-20,
8.2056e-21, 1.9270e-20, 4.9340e-20, -1.4611e-20, 1.4717e-20,
3.4305e-20],
[-4.9234e-21, 1.0588e-19, -4.0446e-20, -3.0917e-20, -5.2516e-20,
9.4232e-21, 4.5105e-20, -5.2940e-20, 3.9175e-20, -4.8069e-20,
-1.2494e-20, -6.8186e-20, 2.3082e-20, -1.4691e-21, -1.3129e-20,
5.9716e-20]], dtype=torch.bfloat16)
>>> m["model.layers.42.self_attn.k_proj.weight"].reshape(-1, 256)[40].reshape(-1, 16)
tensor([[-6.3527e-21, 7.5809e-20, -2.6787e-20, -5.9292e-20, -1.1435e-19,
-3.9811e-20, -9.8997e-21, -3.7693e-20, 7.7080e-20, -1.5458e-20,
-6.6969e-21, 1.2790e-19, 7.9198e-20, -5.6751e-20, 2.2764e-20,
-5.1881e-21],
[ 3.8116e-20, 5.6328e-20, -8.4703e-22, 2.1388e-20, -5.2728e-20,
-2.3082e-20, 3.1631e-21, 4.7315e-22, 6.2257e-20, -2.4035e-20,
-4.9975e-20, 7.0304e-20, -5.9143e-23, -1.1096e-19, 4.5740e-20,
-1.8211e-20],
[ 5.4634e-20, 3.8540e-20, -5.6751e-20, -4.4046e-20, -7.8880e-21,
-4.6587e-20, 2.0541e-20, 3.1975e-20, -2.7317e-20, 2.9646e-20,
-1.5776e-20, -3.3034e-20, 8.8515e-20, -1.6729e-20, 7.4539e-20,
-2.0382e-21],
[ 4.5740e-20, -9.4021e-20, -1.2335e-20, 4.8175e-21, 4.6587e-20,
3.5787e-20, 6.6069e-20, -2.0858e-20, 4.9340e-20, 8.4280e-20,
-5.2940e-20, 4.1293e-20, 3.5364e-20, -8.3645e-21, -1.5948e-21,
-1.7788e-20],
[-3.4093e-20, -2.9858e-20, -2.0646e-20, 2.9223e-20, 6.2998e-21,
-2.0435e-20, -4.6057e-21, 3.7058e-20, 2.7317e-20, -3.9387e-20,
2.0541e-20, -6.5222e-20, -2.0329e-20, 9.3174e-21, -3.1340e-20,
1.5352e-20],
[ 5.7439e-21, 1.6305e-20, 4.9551e-20, -2.6576e-20, 6.3951e-20,
-3.1340e-20, 8.9336e-22, 1.2904e-21, 5.1087e-21, 3.7905e-20,
-1.0694e-20, -1.0910e-18, 1.4188e-20, -5.2145e-21, 2.7105e-20,
-4.5105e-20],
[ 2.6576e-20, 5.0028e-21, 6.2680e-20, 3.3458e-20, -2.4352e-20,
9.4232e-21, 9.0527e-21, 8.1527e-21, 4.1928e-20, -1.1435e-20,
-5.2304e-20, 3.3246e-20, -3.1128e-20, -2.3929e-20, 2.8799e-20,
1.8127e-19],
[ 3.5787e-20, -9.3174e-21, -2.1043e-21, -3.2823e-20, 2.4749e-21,
-1.7073e-21, -1.5670e-20, -2.7529e-20, 6.0986e-20, -4.9551e-20,
6.6492e-20, -7.4115e-21, -3.7269e-20, -3.8328e-20, -3.7058e-21,
-2.1917e-20],
[ 1.0747e-20, -4.1293e-20, -1.9376e-20, 4.1505e-20, 3.8381e-21,
-1.4188e-20, 3.4093e-20, 1.8211e-20, 2.9117e-21, 1.8529e-21,
1.2917e-20, -7.4115e-20, 1.1689e-19, -2.1388e-20, -1.9588e-20,
8.7244e-20],
[ 6.7498e-21, -2.1599e-20, 5.0187e-20, 4.8281e-20, -1.3976e-20,
-3.4517e-20, -3.0070e-20, -1.7047e-20, -9.2115e-21, 4.1928e-20,
-6.8186e-20, -9.2115e-21, -2.4246e-20, -4.1081e-20, 9.1480e-20,
-1.7364e-19],
[ 1.4400e-20, 3.7322e-21, -2.4776e-20, -2.8164e-20, -5.9716e-20,
1.3698e-21, -3.5364e-20, -9.9526e-20, 2.3293e-20, 8.5762e-21,
-2.1493e-20, 1.2335e-20, 9.8468e-21, 9.5291e-21, 1.0164e-19,
-9.4444e-20],
[-8.6821e-20, -2.5623e-20, 4.7646e-20, -5.5057e-20, -5.1034e-20,
-5.9888e-22, -2.7105e-20, -2.9223e-20, -2.2129e-20, -3.9969e-21,
-6.4057e-21, -3.2823e-20, -2.5940e-20, 3.4093e-20, -6.8186e-20,
1.1096e-19],
[-1.3976e-20, -1.9482e-20, -1.9397e-19, -6.4798e-20, 2.2552e-20,
-4.7434e-20, 1.1858e-20, -8.4280e-20, 4.1081e-20, -5.2728e-20,
6.9033e-20, -1.6623e-20, 3.4305e-20, -3.3458e-20, 5.2940e-20,
4.6163e-20],
[ 2.1282e-20, 3.8540e-20, 2.3929e-20, -1.0853e-20, -5.3787e-20,
-1.0059e-21, -2.1282e-20, -2.4564e-20, 2.0011e-20, -1.4228e-21,
-2.9646e-20, -4.7646e-20, -2.6258e-20, 1.7258e-20, 2.2003e-22,
7.7927e-20],
[ 2.9858e-20, -1.0217e-20, 5.2093e-20, -1.9799e-20, 1.0747e-20,
5.9292e-20, -4.6587e-21, 2.5940e-20, 4.0446e-20, 6.9351e-21,
5.1087e-21, -2.3188e-20, -4.9551e-20, -1.3870e-20, -1.8105e-20,
-1.8529e-20],
[ 1.7788e-20, -8.2162e-20, -1.9058e-20, 3.0917e-20, 1.9376e-20,
-7.6762e-21, -1.1117e-20, 8.6291e-21, -4.1716e-20, 1.0503e-19,
4.9234e-21, 5.5057e-20, -3.5364e-20, 2.0011e-20, -3.7481e-20,
-3.0493e-20]], dtype=torch.bfloat16) |
||
| for (int i = 0; i < n; ++i) { L[i] = 0; } | ||
| return 0.f; | ||
| } | ||
|
|
@@ -3021,7 +3021,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict | |
| } | ||
| float max = xval[0]; | ||
| for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); | ||
| if (max < GROUP_MAX_EPS) { | ||
| if (fabsf(max) < GROUP_MAX_EPS) { | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
| scales[ib] = 0; | ||
| memset(L, 0, 32); | ||
| continue; | ||
|
|
@@ -3197,7 +3197,7 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v | |
| } | ||
| float max = xval[0]; | ||
| for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); | ||
| if (max < GROUP_MAX_EPS) { | ||
| if (fabsf(max) < GROUP_MAX_EPS) { | ||
| scales[ib] = 0; | ||
| memset(L, 0, 16); | ||
| continue; | ||
|
|
@@ -3638,7 +3638,7 @@ static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, v | |
| } | ||
| float max = xval[0]; | ||
| for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); | ||
| if (max < GROUP_MAX_EPS_IQ3_XXS) { | ||
| if (fabsf(max) < GROUP_MAX_EPS_IQ3_XXS) { | ||
| scales[ib] = 0; | ||
| memset(L, 0, 32); | ||
| continue; | ||
|
|
@@ -4808,7 +4808,7 @@ static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy | |
| } | ||
| float max = xval[0]; | ||
| for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); | ||
| if (max < GROUP_MAX_EPS_IQ2_S) { | ||
| if (fabsf(max) < GROUP_MAX_EPS_IQ2_S) { | ||
| scales[ib] = 0; | ||
| continue; | ||
| } | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Didn't we already use
fabsfjust above. How is this extrafabsfsupposed to help?