-
Notifications
You must be signed in to change notification settings - Fork 13.6k
Closed
Labels
Description
Name and Version
version: 4731 (0f2bbe6)
built with cc (Debian 14.2.0-16) 14.2.0 for x86_64-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
Device 0: NVIDIA GeForce RTX 5060 Ti, compute capability 12.0, VMM: yes
Models
Mistral Small 2506 Q4_K_M
Problem description & steps to reproduce
Crash when running llama-server. See log.
First Bad Commit
No response
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 5060 Ti, compute capability 12.0, VMM: yes
build: 6445 (00681dfc1) with cc (Debian 14.2.0-19) 14.2.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 1200 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 5000, http threads: 15
main: loading model
srv load_model: loading model 'models/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 5060 Ti) - 14691 MiB free
llama_model_loader: loaded meta data with 46 key-value pairs and 363 tensors from models/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Mistral Small 3.2 24B Instruct 2506
llama_model_loader: - kv 3: general.version str = 2506
llama_model_loader: - kv 4: general.finetune str = Instruct
llama_model_loader: - kv 5: general.basename str = Mistral-Small-3.2
llama_model_loader: - kv 6: general.size_label str = 24B
llama_model_loader: - kv 7: general.license str = apache-2.0
llama_model_loader: - kv 8: general.base_model.count u32 = 1
llama_model_loader: - kv 9: general.base_model.0.name str = Mistral Small 3.1 24B Base 2503
llama_model_loader: - kv 10: general.base_model.0.version str = 2503
llama_model_loader: - kv 11: general.base_model.0.organization str = Mistralai
llama_model_loader: - kv 12: general.base_model.0.repo_url str = https://huggingface.co/mistralai/Mist...
llama_model_loader: - kv 13: general.tags arr[str,1] = ["image-text-to-text"]
llama_model_loader: - kv 14: general.languages arr[str,24] = ["en", "fr", "de", "es", "pt", "it", ...
llama_model_loader: - kv 15: llama.block_count u32 = 40
llama_model_loader: - kv 16: llama.context_length u32 = 131072
llama_model_loader: - kv 17: llama.embedding_length u32 = 5120
llama_model_loader: - kv 18: llama.feed_forward_length u32 = 32768
llama_model_loader: - kv 19: llama.attention.head_count u32 = 32
llama_model_loader: - kv 20: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 21: llama.rope.freq_base f32 = 1000000000.000000
llama_model_loader: - kv 22: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 23: llama.attention.key_length u32 = 128
llama_model_loader: - kv 24: llama.attention.value_length u32 = 128
llama_model_loader: - kv 25: llama.vocab_size u32 = 131072
llama_model_loader: - kv 26: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 27: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 28: tokenizer.ggml.pre str = tekken
llama_model_loader: - kv 29: tokenizer.ggml.tokens arr[str,131072] = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv 30: tokenizer.ggml.token_type arr[i32,131072] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 31: tokenizer.ggml.merges arr[str,269443] = ["Ġ Ġ", "Ġ t", "e r", "i n", "Ġ Ä...
llama_model_loader: - kv 32: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 33: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 34: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 35: tokenizer.ggml.padding_token_id u32 = 11
llama_model_loader: - kv 36: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 37: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 38: tokenizer.chat_template str = {%- set today = strftime_now("%Y-%m-%...
llama_model_loader: - kv 39: tokenizer.ggml.add_space_prefix bool = false
llama_model_loader: - kv 40: general.quantization_version u32 = 2
llama_model_loader: - kv 41: general.file_type u32 = 15
llama_model_loader: - kv 42: quantize.imatrix.file str = /models_out/Mistral-Small-3.2-24B-Ins...
llama_model_loader: - kv 43: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 44: quantize.imatrix.entries_count u32 = 280
llama_model_loader: - kv 45: quantize.imatrix.chunks_count u32 = 499
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type q4_K: 241 tensors
llama_model_loader: - type q6_K: 41 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 13.34 GiB (4.86 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load: - 2 ('</s>')
load: special tokens cache size = 1000
load: token to piece cache size = 0.8498 MB
print_info: arch = llama
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 40
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 32768
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 1000000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: model type = 13B
print_info: model params = 23.57 B
print_info: general.name = Mistral Small 3.2 24B Instruct 2506
print_info: vocab type = BPE
print_info: n_vocab = 131072
print_info: n_merges = 269443
print_info: BOS token = 1 '<s>'
print_info: EOS token = 2 '</s>'
print_info: UNK token = 0 '<unk>'
print_info: PAD token = 11 '<pad>'
print_info: LF token = 1010 'Ċ'
print_info: EOG token = 2 '</s>'
print_info: max token length = 150
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 34 repeating layers to GPU
load_tensors: offloaded 34/41 layers to GPU
load_tensors: CUDA0 model buffer size = 10775.66 MiB
load_tensors: CPU_Mapped model buffer size = 2886.70 MiB
...............................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = enabled
llama_context: kv_unified = false
llama_context: freq_base = 1000000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.50 MiB
llama_kv_cache: CUDA0 KV buffer size = 2312.00 MiB
llama_kv_cache: CPU KV buffer size = 408.00 MiB
llama_kv_cache: size = 2720.00 MiB ( 32768 cells, 40 layers, 1/1 seqs), K (q8_0): 1360.00 MiB, V (q8_0): 1360.00 MiB
llama_context: CUDA0 compute buffer size = 791.00 MiB
llama_context: CUDA_Host compute buffer size = 74.01 MiB
llama_context: graph nodes = 1247
llama_context: graph splits = 70 (with bs=512), 3 (with bs=1)
common_init_from_params: added </s> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
Failed to generate tool call example: Value is not callable: null at row 2, column 42:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 2, column 61:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 2, column 63:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 2, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 1, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
^
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 32768
[New LWP 225306]
[New LWP 225305]
[New LWP 225304]
[New LWP 225303]
[New LWP 225302]
[New LWP 225301]
[New LWP 225300]
[New LWP 225299]
[New LWP 225298]
[New LWP 225297]
[New LWP 225296]
[New LWP 225295]
[New LWP 225294]
[New LWP 225293]
[New LWP 225292]
[New LWP 225291]
[New LWP 225290]
[New LWP 225289]
[New LWP 225288]
[New LWP 225287]
[New LWP 225286]
[New LWP 225285]
[New LWP 225284]
[New LWP 225283]
[New LWP 225282]
[New LWP 225281]
[New LWP 225276]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
__syscall_cancel_arch () at ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S:56
warning: 56 ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S: No such file or directory
#0 __syscall_cancel_arch () at ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S:56
56 in ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S
#1 0x00007f2289299668 in __internal_syscall_cancel (a1=<optimized out>, a2=<optimized out>, a3=<optimized out>, a4=<optimized out>, a5=a5@entry=0, a6=a6@entry=0, nr=61) at ./nptl/cancellation.c:49
warning: 49 ./nptl/cancellation.c: No such file or directory
#2 0x00007f22892996ad in __syscall_cancel (a1=<optimized out>, a2=<optimized out>, a3=<optimized out>, a4=<optimized out>, a5=a5@entry=0, a6=a6@entry=0, nr=61) at ./nptl/cancellation.c:75
75 in ./nptl/cancellation.c
#3 0x00007f2289304787 in __GI___wait4 (pid=<optimized out>, stat_loc=<optimized out>, options=<optimized out>, usage=<optimized out>) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30 ../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
#4 0x00007f2289b37d6b in ggml_print_backtrace () from llama.cpp/build/bin/Release/libggml-base.so
#5 0x00007f2289b48ab9 in ggml_uncaught_exception() () from llama.cpp/build/bin/Release/libggml-base.so
#6 0x00007f22894b344a in ?? () from /lib/x86_64-linux-gnu/libstdc++.so.6
#7 0x00007f22894a15e9 in std::terminate() () from /lib/x86_64-linux-gnu/libstdc++.so.6
#8 0x00007f22894b36c8 in __cxa_throw () from /lib/x86_64-linux-gnu/libstdc++.so.6
#9 0x0000556a33e03a51 in minja::TemplateNode::render(std::__cxx11::basic_ostringstream<char, std::char_traits<char>, std::allocator<char> >&, std::shared_ptr<minja::Context> const&) const ()
#10 0x0000556a33e303a0 in minja::chat_template::apply[abi:cxx11](minja::chat_template_inputs const&, minja::chat_template_options const&) const ()
#11 0x0000556a33df0c96 in apply(minja::chat_template const&, templates_params const&, std::optional<nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> > const&, std::optional<nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> > const&, std::optional<nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> > const&) ()
#12 0x0000556a33df12a2 in common_chat_params_init_without_tools(minja::chat_template const&, templates_params const&) ()
#13 0x0000556a33df8fdd in common_chat_templates_apply_jinja(common_chat_templates const*, common_chat_templates_inputs const&) ()
#14 0x0000556a33df94d5 in common_chat_templates_apply(common_chat_templates const*, common_chat_templates_inputs const&) ()
#15 0x0000556a33dfa014 in common_chat_templates_support_enable_thinking(common_chat_templates const*) ()
#16 0x0000556a33d7cf33 in server_context::init() ()
#17 0x0000556a33ce43e1 in main ()
[Inferior 1 (process 225275) detached]
terminate called after throwing an instance of 'std::runtime_error'
what(): Value is not callable: null at row 2, column 42:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 2, column 61:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 2, column 63:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 2, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
at row 1, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
^
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
Aborted (core dumped)