Skip to content

Eval bug: Crash with Mistral Small 2506 #15930

@allo-

Description

@allo-

Name and Version

version: 4731 (0f2bbe6)
built with cc (Debian 14.2.0-16) 14.2.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

CUDA

Hardware

Device 0: NVIDIA GeForce RTX 5060 Ti, compute capability 12.0, VMM: yes

Models

Mistral Small 2506 Q4_K_M

Problem description & steps to reproduce

Crash when running llama-server. See log.

First Bad Commit

No response

Relevant log output

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 5060 Ti, compute capability 12.0, VMM: yes
build: 6445 (00681dfc1) with cc (Debian 14.2.0-19) 14.2.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16

system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 1200 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 5000, http threads: 15
main: loading model
srv    load_model: loading model 'models/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 5060 Ti) - 14691 MiB free
llama_model_loader: loaded meta data with 46 key-value pairs and 363 tensors from models/mistralai_Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Mistral Small 3.2 24B Instruct 2506
llama_model_loader: - kv   3:                            general.version str              = 2506
llama_model_loader: - kv   4:                           general.finetune str              = Instruct
llama_model_loader: - kv   5:                           general.basename str              = Mistral-Small-3.2
llama_model_loader: - kv   6:                         general.size_label str              = 24B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                   general.base_model.count u32              = 1
llama_model_loader: - kv   9:                  general.base_model.0.name str              = Mistral Small 3.1 24B Base 2503
llama_model_loader: - kv  10:               general.base_model.0.version str              = 2503
llama_model_loader: - kv  11:          general.base_model.0.organization str              = Mistralai
llama_model_loader: - kv  12:              general.base_model.0.repo_url str              = https://huggingface.co/mistralai/Mist...
llama_model_loader: - kv  13:                               general.tags arr[str,1]       = ["image-text-to-text"]
llama_model_loader: - kv  14:                          general.languages arr[str,24]      = ["en", "fr", "de", "es", "pt", "it", ...
llama_model_loader: - kv  15:                          llama.block_count u32              = 40
llama_model_loader: - kv  16:                       llama.context_length u32              = 131072
llama_model_loader: - kv  17:                     llama.embedding_length u32              = 5120
llama_model_loader: - kv  18:                  llama.feed_forward_length u32              = 32768
llama_model_loader: - kv  19:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  20:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  21:                       llama.rope.freq_base f32              = 1000000000.000000
llama_model_loader: - kv  22:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  23:                 llama.attention.key_length u32              = 128
llama_model_loader: - kv  24:               llama.attention.value_length u32              = 128
llama_model_loader: - kv  25:                           llama.vocab_size u32              = 131072
llama_model_loader: - kv  26:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  27:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  28:                         tokenizer.ggml.pre str              = tekken
llama_model_loader: - kv  29:                      tokenizer.ggml.tokens arr[str,131072]  = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv  30:                  tokenizer.ggml.token_type arr[i32,131072]  = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  31:                      tokenizer.ggml.merges arr[str,269443]  = ["Ġ Ġ", "Ġ t", "e r", "i n", "Ġ Ä...
llama_model_loader: - kv  32:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  33:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  34:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  35:            tokenizer.ggml.padding_token_id u32              = 11
llama_model_loader: - kv  36:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  37:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  38:                    tokenizer.chat_template str              = {%- set today = strftime_now("%Y-%m-%...
llama_model_loader: - kv  39:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  40:               general.quantization_version u32              = 2
llama_model_loader: - kv  41:                          general.file_type u32              = 15
llama_model_loader: - kv  42:                      quantize.imatrix.file str              = /models_out/Mistral-Small-3.2-24B-Ins...
llama_model_loader: - kv  43:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  44:             quantize.imatrix.entries_count u32              = 280
llama_model_loader: - kv  45:              quantize.imatrix.chunks_count u32              = 499
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q4_K:  241 tensors
llama_model_loader: - type q6_K:   41 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 13.34 GiB (4.86 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load:   - 2 ('</s>')
load: special tokens cache size = 1000
load: token to piece cache size = 0.8498 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 5120
print_info: n_layer          = 40
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 32768
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: model type       = 13B
print_info: model params     = 23.57 B
print_info: general.name     = Mistral Small 3.2 24B Instruct 2506
print_info: vocab type       = BPE
print_info: n_vocab          = 131072
print_info: n_merges         = 269443
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 2 '</s>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 11 '<pad>'
print_info: LF token         = 1010 'Ċ'
print_info: EOG token        = 2 '</s>'
print_info: max token length = 150
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 34 repeating layers to GPU
load_tensors: offloaded 34/41 layers to GPU
load_tensors:        CUDA0 model buffer size = 10775.66 MiB
load_tensors:   CPU_Mapped model buffer size =  2886.70 MiB
...............................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = enabled
llama_context: kv_unified    = false
llama_context: freq_base     = 1000000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.50 MiB
llama_kv_cache:      CUDA0 KV buffer size =  2312.00 MiB
llama_kv_cache:        CPU KV buffer size =   408.00 MiB
llama_kv_cache: size = 2720.00 MiB ( 32768 cells,  40 layers,  1/1 seqs), K (q8_0): 1360.00 MiB, V (q8_0): 1360.00 MiB
llama_context:      CUDA0 compute buffer size =   791.00 MiB
llama_context:  CUDA_Host compute buffer size =    74.01 MiB
llama_context: graph nodes  = 1247
llama_context: graph splits = 70 (with bs=512), 3 (with bs=1)
common_init_from_params: added </s> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
Failed to generate tool call example: Value is not callable: null at row 2, column 42:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
                                         ^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 2, column 61:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
                                                            ^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 2, column 63:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
                                                              ^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 2, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 1, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
^
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}

srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32768
[New LWP 225306]
[New LWP 225305]
[New LWP 225304]
[New LWP 225303]
[New LWP 225302]
[New LWP 225301]
[New LWP 225300]
[New LWP 225299]
[New LWP 225298]
[New LWP 225297]
[New LWP 225296]
[New LWP 225295]
[New LWP 225294]
[New LWP 225293]
[New LWP 225292]
[New LWP 225291]
[New LWP 225290]
[New LWP 225289]
[New LWP 225288]
[New LWP 225287]
[New LWP 225286]
[New LWP 225285]
[New LWP 225284]
[New LWP 225283]
[New LWP 225282]
[New LWP 225281]
[New LWP 225276]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
__syscall_cancel_arch () at ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S:56
warning: 56	../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S: No such file or directory
#0  __syscall_cancel_arch () at ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S:56
56	in ../sysdeps/unix/sysv/linux/x86_64/syscall_cancel.S
#1  0x00007f2289299668 in __internal_syscall_cancel (a1=<optimized out>, a2=<optimized out>, a3=<optimized out>, a4=<optimized out>, a5=a5@entry=0, a6=a6@entry=0, nr=61) at ./nptl/cancellation.c:49
warning: 49	./nptl/cancellation.c: No such file or directory
#2  0x00007f22892996ad in __syscall_cancel (a1=<optimized out>, a2=<optimized out>, a3=<optimized out>, a4=<optimized out>, a5=a5@entry=0, a6=a6@entry=0, nr=61) at ./nptl/cancellation.c:75
75	in ./nptl/cancellation.c
#3  0x00007f2289304787 in __GI___wait4 (pid=<optimized out>, stat_loc=<optimized out>, options=<optimized out>, usage=<optimized out>) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
#4  0x00007f2289b37d6b in ggml_print_backtrace () from llama.cpp/build/bin/Release/libggml-base.so
#5  0x00007f2289b48ab9 in ggml_uncaught_exception() () from llama.cpp/build/bin/Release/libggml-base.so
#6  0x00007f22894b344a in ?? () from /lib/x86_64-linux-gnu/libstdc++.so.6
#7  0x00007f22894a15e9 in std::terminate() () from /lib/x86_64-linux-gnu/libstdc++.so.6
#8  0x00007f22894b36c8 in __cxa_throw () from /lib/x86_64-linux-gnu/libstdc++.so.6
#9  0x0000556a33e03a51 in minja::TemplateNode::render(std::__cxx11::basic_ostringstream<char, std::char_traits<char>, std::allocator<char> >&, std::shared_ptr<minja::Context> const&) const ()
#10 0x0000556a33e303a0 in minja::chat_template::apply[abi:cxx11](minja::chat_template_inputs const&, minja::chat_template_options const&) const ()
#11 0x0000556a33df0c96 in apply(minja::chat_template const&, templates_params const&, std::optional<nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> > const&, std::optional<nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> > const&, std::optional<nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long, unsigned long, double, std::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::vector<unsigned char, std::allocator<unsigned char> >, void> > const&) ()
#12 0x0000556a33df12a2 in common_chat_params_init_without_tools(minja::chat_template const&, templates_params const&) ()
#13 0x0000556a33df8fdd in common_chat_templates_apply_jinja(common_chat_templates const*, common_chat_templates_inputs const&) ()
#14 0x0000556a33df94d5 in common_chat_templates_apply(common_chat_templates const*, common_chat_templates_inputs const&) ()
#15 0x0000556a33dfa014 in common_chat_templates_support_enable_thinking(common_chat_templates const*) ()
#16 0x0000556a33d7cf33 in server_context::init() ()
#17 0x0000556a33ce43e1 in main ()
[Inferior 1 (process 225275) detached]
terminate called after throwing an instance of 'std::runtime_error'
  what():  Value is not callable: null at row 2, column 42:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
                                         ^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 2, column 61:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
                                                            ^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 2, column 63:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
                                                              ^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 2, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}
^
{%- set default_system_message = "You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\nYour knowledge base was last updated on 2023-10-01. The current date is " + today + ".\n\nWhen you're not sure about some information or when the user's request requires up-to-date or specific data, you must use the available tools to fetch the information. Do not hesitate to use tools whenever they can provide a more accurate or complete response. If no relevant tools are available, then clearly state that you don't have the information and avoid making up anything.
 at row 1, column 1:
{%- set today = strftime_now("%Y-%m-%d") %}
^
{%- set yesterday = (today | as_datetime - timedelta(days=1)).strftime("%Y-%m-%d") %}

Aborted (core dumped)

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions