Skip to content
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 69 additions & 56 deletions src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1942,35 +1942,19 @@ struct mmid_row_mapping {
int32_t i2;
};

static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10,
size_t nb11, size_t nb12) {
int32_t iid1 = blockIdx.x;
int32_t id = blockIdx.y;

const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);

if (row_id_i != i02) {
return;
}

const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
static __global__ void k_copy_src_to_contiguous(const char * __restrict__ src_original, char * __restrict__ src_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne10, int64_t ne11, size_t nb11, size_t nb12) {
int32_t i = blockIdx.x;

__shared__ int src1_row;
if (threadIdx.x == 0) {
src1_row = atomicAdd(cur_src1_row, 1);
row_mapping[src1_row] = {id, iid1};
}
__syncthreads();
const int32_t i11 = row_mapping[i].i1 % ne11;
const int32_t i12 = row_mapping[i].i2;

const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
float * src_row_contiguous = (float *)(src_contiguous + i*nb11);
const float * src_row_original = (const float *)(src_original + i11*nb11 + i12*nb12);

for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
src1_row_contiguous[i] = src1_row_original[i];
for (int j = threadIdx.x; j < ne10; j += blockDim.x) {
src_row_contiguous[j] = src_row_original[j];
}
}

Expand All @@ -1991,6 +1975,51 @@ static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_origin
}
}

static inline void prepare_row_mappings(ggml_backend_cuda_context& ctx, int64_t n_as, int64_t n_ids,
const ggml_tensor * ids, std::vector<int>& moe_counts, std::vector<int>& cum_moe_counts,
ggml_cuda_pool_alloc<mmid_row_mapping>& dev_row_mapping) {

GGML_ASSERT(moe_counts.empty() && cum_moe_counts.empty());

auto stream = ctx.stream();

std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));

std::vector<mmid_row_mapping> rmapping(ids->ne[1]*n_ids);
moe_counts.resize(n_as, 0);
cum_moe_counts.resize(n_as + 1);

for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (row_id_i >= 0 && row_id_i < n_as) ++moe_counts[row_id_i];
}
}
cum_moe_counts[0] = 0;
for (int i = 0; i < (int)n_as; ++i) {
cum_moe_counts[i+1] = cum_moe_counts[i] + moe_counts[i];
}

dev_row_mapping.alloc(cum_moe_counts[n_as]);

for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (row_id_i >= 0 && row_id_i < n_as) {
rmapping[cum_moe_counts[row_id_i]++] = {(int)id, (int)iid1};
}
}
}

for (int i = 0; i < (int)n_as; ++i) cum_moe_counts[i] -= moe_counts[i];

CUDA_CHECK(cudaMemcpyAsync(dev_row_mapping.get(), rmapping.data(), cum_moe_counts[n_as]*sizeof(mmid_row_mapping), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
}

static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
Expand All @@ -2005,11 +2034,6 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];

std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));

ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
Expand All @@ -2035,6 +2059,10 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
dst_row.nb[3] = nb1;

if (ne12 == 1) {
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
Expand All @@ -2055,46 +2083,31 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
}
}
} else {
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool());
std::vector<int> moe_counts, cum_moe_counts;
prepare_row_mappings(ctx, n_as, n_ids, ids, moe_counts, cum_moe_counts, dev_row_mapping);

ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));

src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get();

for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0;

for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);

if (row_id_i != i02) {
continue;
}

num_src1_rows++;
}
}
int64_t num_src1_rows = moe_counts[i02];

if (num_src1_rows == 0) {
continue;
}

ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
size_t mapping_offset = cum_moe_counts[i02];

{
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(ids->ne[1], n_ids);
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(),
dev_cur_src1_row.get(), dev_row_mapping.get(),
ids_dev, i02, ids->nb[1], ids->nb[0],
ne11, ne10,
nb11, nb12);
dim3 grid_dims(num_src1_rows);
k_copy_src_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(), dev_row_mapping.get() + mapping_offset, ne10, ne11, nb11, nb12);
CUDA_CHECK(cudaGetLastError());
}

Expand All @@ -2120,7 +2133,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
dst_original, dst_contiguous.get(),
dev_row_mapping.get(),
dev_row_mapping.get() + mapping_offset,
ne0,
nb1, nb2);
CUDA_CHECK(cudaGetLastError());
Expand Down