Skip to content

Commit

Permalink
Better perplexity for 2- and 3-bit quantization for LLaMA-v2-70B (#2807)
Browse files Browse the repository at this point in the history
* Better perplexity for 2- and 3-bit quantization for the 70B model

* PR comment

---------

Co-authored-by: Iwan Kawrakow <[email protected]>
  • Loading branch information
ikawrakow and Kawrakow authored Aug 26, 2023
1 parent 771551a commit 7592375
Showing 1 changed file with 14 additions and 0 deletions.
14 changes: 14 additions & 0 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4653,6 +4653,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s

std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false));

llama_model model;
llm_load_arch(*ml, model);
llm_load_hparams(*ml, model, 0, 0, 0);

const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty();

Expand All @@ -4678,6 +4682,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
++n_feed_forward_w2;
}
}
if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
__func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
}

int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
Expand Down Expand Up @@ -4769,6 +4777,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
if (model.type == MODEL_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
++i_attention_wv;
} else if (name.find("ffn_down.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
Expand Down

0 comments on commit 7592375

Please sign in to comment.