Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(raymath): MatrixDecompose #438

Merged
merged 2 commits into from
Oct 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 53 additions & 0 deletions raylib/raymath.go
Original file line number Diff line number Diff line change
Expand Up @@ -1792,3 +1792,56 @@ func QuaternionEquals(p, q Quaternion) bool {
math.Abs(float64(p.Z+q.Z)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.Z)), math.Abs(float64(q.Z)))) &&
math.Abs(float64(p.W+q.W)) <= 0.000001*math.Max(1.0, math.Max(math.Abs(float64(p.W)), math.Abs(float64(q.W)))))
}

// MatrixDecompose - Decompose a transformation matrix into its rotational, translational and scaling components
func MatrixDecompose(mat Matrix, translation *Vector3, rotation *Quaternion, scale *Vector3) {
// Extract translation.
translation.X = mat.M12
translation.Y = mat.M13
translation.Z = mat.M14

// Extract upper-left for determinant computation
a := mat.M0
b := mat.M4
c := mat.M8
d := mat.M1
e := mat.M5
f := mat.M9
g := mat.M2
h := mat.M6
i := mat.M10
A := e*i - f*h
B := f*g - d*i
C := d*h - e*g

// Extract scale
det := a*A + b*B + c*C
abc := NewVector3(a, b, c)
def := NewVector3(d, e, f)
ghi := NewVector3(g, h, i)

scalex := Vector3Length(abc)
scaley := Vector3Length(def)
scalez := Vector3Length(ghi)
s := NewVector3(scalex, scaley, scalez)

if det < 0 {
s = Vector3Negate(s)
}

*scale = s

// Remove scale from the matrix if it is not close to zero
clone := mat
if !FloatEquals(det, 0) {
clone.M0 /= s.X
clone.M5 /= s.Y
clone.M10 /= s.Z

// Extract rotation
*rotation = QuaternionFromMatrix(clone)
} else {
// Set to identity if close to zero
*rotation = QuaternionIdentity()
}
}
55 changes: 55 additions & 0 deletions raylib/raymath.h
Original file line number Diff line number Diff line change
Expand Up @@ -2524,4 +2524,59 @@ RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
return result;
}

// Decompose a transformation matrix into its rotational, translational and scaling components
RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
{
// Extract translation.
translation->x = mat.m12;
translation->y = mat.m13;
translation->z = mat.m14;

// Extract upper-left for determinant computation
const float a = mat.m0;
const float b = mat.m4;
const float c = mat.m8;
const float d = mat.m1;
const float e = mat.m5;
const float f = mat.m9;
const float g = mat.m2;
const float h = mat.m6;
const float i = mat.m10;
const float A = e*i - f*h;
const float B = f*g - d*i;
const float C = d*h - e*g;

// Extract scale
const float det = a*A + b*B + c*C;
Vector3 abc = { a, b, c };
Vector3 def = { d, e, f };
Vector3 ghi = { g, h, i };

float scalex = Vector3Length(abc);
float scaley = Vector3Length(def);
float scalez = Vector3Length(ghi);
Vector3 s = { scalex, scaley, scalez };

if (det < 0) s = Vector3Negate(s);

*scale = s;

// Remove scale from the matrix if it is not close to zero
Matrix clone = mat;
if (!FloatEquals(det, 0))
{
clone.m0 /= s.x;
clone.m5 /= s.y;
clone.m10 /= s.z;

// Extract rotation
*rotation = QuaternionFromMatrix(clone);
}
else
{
// Set to identity if close to zero
*rotation = QuaternionIdentity();
}
}

#endif // RAYMATH_H
Loading