Skip to content

Commit

Permalink
Replace multi-resolution discriminator; update AdamW default config (#30
Browse files Browse the repository at this point in the history
)

* New multi-resolution discriminator adopted from DAC

* Default optimizer params

* Bump version

* Update README.md
  • Loading branch information
hubertsiuzdak authored Oct 14, 2023
1 parent 1793fe5 commit 11b4628
Show file tree
Hide file tree
Showing 8 changed files with 64 additions and 66 deletions.
10 changes: 3 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -82,14 +82,10 @@ See [example notebook](notebooks%2FBark%2BVocos.ipynb).

## Pre-trained models

The provided models were trained up to 2.5 million generator iterations, which resulted in slightly better objective
scores
compared to those reported in the paper.

| Model Name | Dataset | Training Iterations | Parameters
|-------------------------------------------------------------------------------------|---------------|---------------------|------------|
| [charactr/vocos-mel-24khz](https://huggingface.co/charactr/vocos-mel-24khz) | LibriTTS | 2.5 M | 13.5 M
| [charactr/vocos-encodec-24khz](https://huggingface.co/charactr/vocos-encodec-24khz) | DNS Challenge | 2.5 M | 7.9 M
|-------------------------------------------------------------------------------------|---------------|-------------------|------------|
| [charactr/vocos-mel-24khz](https://huggingface.co/charactr/vocos-mel-24khz) | LibriTTS | 1M | 13.5M
| [charactr/vocos-encodec-24khz](https://huggingface.co/charactr/vocos-encodec-24khz) | DNS Challenge | 2M | 7.9M

## Training

Expand Down
2 changes: 1 addition & 1 deletion configs/vocos-encodec.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ model:
class_path: vocos.experiment.VocosEncodecExp
init_args:
sample_rate: 24000
initial_learning_rate: 2e-4
initial_learning_rate: 5e-4
mel_loss_coeff: 45
mrd_loss_coeff: 1.0
num_warmup_steps: 0 # Optimizers warmup steps
Expand Down
2 changes: 1 addition & 1 deletion configs/vocos-imdct.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ model:
class_path: vocos.experiment.VocosExp
init_args:
sample_rate: 24000
initial_learning_rate: 2e-4
initial_learning_rate: 5e-4
mel_loss_coeff: 45
mrd_loss_coeff: 0.1
num_warmup_steps: 0 # Optimizers warmup steps
Expand Down
2 changes: 1 addition & 1 deletion configs/vocos-resnet.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ model:
class_path: vocos.experiment.VocosExp
init_args:
sample_rate: 24000
initial_learning_rate: 2e-4
initial_learning_rate: 5e-4
mel_loss_coeff: 45
mrd_loss_coeff: 0.1
num_warmup_steps: 0 # Optimizers warmup steps
Expand Down
2 changes: 1 addition & 1 deletion configs/vocos.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ model:
class_path: vocos.experiment.VocosExp
init_args:
sample_rate: 24000
initial_learning_rate: 2e-4
initial_learning_rate: 5e-4
mel_loss_coeff: 45
mrd_loss_coeff: 0.1
num_warmup_steps: 0 # Optimizers warmup steps
Expand Down
2 changes: 1 addition & 1 deletion vocos/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from vocos.pretrained import Vocos


__version__ = "0.0.4"
__version__ = "0.1.0"
106 changes: 54 additions & 52 deletions vocos/discriminators.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,11 @@
from typing import List, Optional, Tuple

import torch
from einops import rearrange
from torch import nn
from torch.nn import Conv2d
from torch.nn.utils import weight_norm

PeriodsType = Tuple[int, ...]
ResolutionType = Tuple[int, int, int]
from torchaudio.transforms import Spectrogram


class MultiPeriodDiscriminator(nn.Module):
Expand All @@ -20,7 +19,7 @@ class MultiPeriodDiscriminator(nn.Module):
Defaults to None.
"""

def __init__(self, periods: PeriodsType = (2, 3, 5, 7, 11), num_embeddings: Optional[int] = None):
def __init__(self, periods: Tuple[int, ...] = (2, 3, 5, 7, 11), num_embeddings: Optional[int] = None):
super().__init__()
self.discriminators = nn.ModuleList([DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods])

Expand Down Expand Up @@ -104,30 +103,26 @@ def forward(
class MultiResolutionDiscriminator(nn.Module):
def __init__(
self,
resolutions: Tuple[ResolutionType, ResolutionType, ResolutionType] = (
(1024, 256, 1024),
(2048, 512, 2048),
(512, 128, 512),
),
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
num_embeddings: Optional[int] = None,
):
"""
Multi-Resolution Discriminator module adapted from https://github.com/mindslab-ai/univnet.
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
Additionally, it allows incorporating conditional information with a learned embeddings table.
Args:
resolutions (tuple[tuple[int, int, int]]): Tuple of resolutions for each discriminator.
Each resolution should be a tuple of (n_fft, hop_length, win_length).
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
Defaults to None.
"""

super().__init__()
self.discriminators = nn.ModuleList(
[DiscriminatorR(resolution=r, num_embeddings=num_embeddings) for r in resolutions]
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
)

def forward(
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: Optional[torch.Tensor] = None
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
Expand All @@ -148,40 +143,62 @@ def forward(
class DiscriminatorR(nn.Module):
def __init__(
self,
resolution: Tuple[int, int, int],
channels: int = 64,
in_channels: int = 1,
window_length: int,
num_embeddings: Optional[int] = None,
lrelu_slope: float = 0.1,
channels: int = 32,
hop_factor: float = 0.25,
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
):
super().__init__()
self.resolution = resolution
self.in_channels = in_channels
self.lrelu_slope = lrelu_slope
self.convs = nn.ModuleList(
self.window_length = window_length
self.hop_factor = hop_factor
self.spec_fn = Spectrogram(
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
convs = lambda: nn.ModuleList(
[
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))),
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)),
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)),
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
]
)
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])

if num_embeddings is not None:
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
torch.nn.init.zeros_(self.emb.weight)
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1)))

def forward(
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))

def spectrogram(self, x):
# Remove DC offset
x = x - x.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
x = self.spec_fn(x)
x = torch.view_as_real(x)
x = rearrange(x, "b f t c -> b c t f")
# Split into bands
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands

def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
x_bands = self.spectrogram(x)
fmap = []
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
fmap.append(x)
x = []
for band, stack in zip(x_bands, self.band_convs):
for i, layer in enumerate(stack):
band = layer(band)
band = torch.nn.functional.leaky_relu(band, 0.1)
if i > 0:
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
if cond_embedding_id is not None:
emb = self.emb(cond_embedding_id)
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
Expand All @@ -190,20 +207,5 @@ def forward(
x = self.conv_post(x)
fmap.append(x)
x += h
x = torch.flatten(x, 1, -1)

return x, fmap

def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
n_fft, hop_length, win_length = self.resolution
magnitude_spectrogram = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=None, # interestingly rectangular window kind of works here
center=True,
return_complex=True,
).abs()

return magnitude_spectrogram
4 changes: 2 additions & 2 deletions vocos/experiment.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,8 @@ def configure_optimizers(self):
{"params": self.head.parameters()},
]

opt_disc = torch.optim.AdamW(disc_params, lr=self.hparams.initial_learning_rate)
opt_gen = torch.optim.AdamW(gen_params, lr=self.hparams.initial_learning_rate)
opt_disc = torch.optim.AdamW(disc_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9))
opt_gen = torch.optim.AdamW(gen_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9))

max_steps = self.trainer.max_steps // 2 # Max steps per optimizer
scheduler_disc = transformers.get_cosine_schedule_with_warmup(
Expand Down

0 comments on commit 11b4628

Please sign in to comment.