Skip to content

Simulation of a self-learning satellite pass selection algorithm as part of my master's thesis.

Notifications You must be signed in to change notification settings

garrettkinman/Self-Learning-Satellite-Pass-Selection

Repository files navigation

Self-Learning-Satellite-Pass-Selection

Simulation of a self-learning satellite pass selection algorithm as part of my master's thesis.

The algorithm is designed to allow individual sensors to learn from experience with satellite transmission successes and failures to quantify what makes a "good" satellite pass for each site, so the devices can spend their limited battery power on more likely-to-succeed transmission attempts.

The algorithm is basically a combination of Monte Carlo learning (from regular reinforcement learning) and softmax exploration (from the k-armed bandit problem).

About

Simulation of a self-learning satellite pass selection algorithm as part of my master's thesis.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages