- Functions for your any project with Python, for any moments
- Functions for send emails easly with Outlook and Gmail
- Functions for used in your GUI with Tkinter
- Functions for use in your projects with Openai
- Functions most used in projects with PDF, exemple, OCR
- Functions for auxiliary in your projects with Selenium and BeautifulSoup
pip install -U funcspy
- selenium
- bs4
- requests
- html5lib
- webdriver-manager
- pretty-html-table
- xlsxwriter
- pandas
- sqlalchemy
- rich
- pyinstaller
- filetype
- pytesseract
- tqdm
- pillow
- PyMuPDF
- holidays
- numpy==1.26.0
Below is an example of how to use the send_email_gmail
function to send an email with multiple recipients and attachments.
from funcspy.emails_funcs.emails_funcs import send_email_gmail
# Email settings
email_app_google = "[email protected]"
passwd_app_gmail = "your_app_password"
emails_to = ["[email protected]", "[email protected]"]
subject = "Email subject"
body_msg = "Email body in HTML format"
# Attachments (optional)
attachments = ["path/to/file1.pdf", "path/to/file2.docx"]
# Send the email
send_email_gmail(email_app_google, passwd_app_gmail, emails_to, subject, body_msg, attachments)
Below is an example of how to use the send_email_outlook
function to send an email with Outlook, including options for recipients, subject, HTML body, attachments, and embedding a DataFrame.
from funcspy.emails_funcs.emails_funcs import send_email_outlook
# Email settings
to = ["[email protected]", "[email protected]"]
subject = "E-mail Subject"
body = "<p>Hello!</p>"
# Attachments (optional)
attachments = ["path/to/file1.pdf", "path/to/file2.docx"]
# DataFrame to be embedded in email body (optional)
# Example format: [df, 'theme_on_pretty_html_table']
send_dateframe_on_body = False # Set to [dataframe, 'theme'] if using pretty_html_table
# Send the email
send_email_outlook(to, subject, body, attachments, send_dateframe_on_body)
Below is an example of how to use the show_popup
function to display a popup window with a specified title and message text.
from funcspy.gui_funcs.gui_funcs import show_popup
# Popup settings
title = "Popup Title"
text = "This is the message displayed in the popup."
# Show the popup
show_popup(title, text)
Below is an example of how to use the api_chat_completions
function to send a chat completion request to the OpenAI API.
from funcspy.openai_funcs.openai_funcs import api_chat_completions
# API settings
api_key = 'your_api_key'
model = 'gpt-4-turbo'
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
# Send the request
response = api_chat_completions(api_key, model, messages)
print(response)
Below is an example of how to use the api_image_generation
function to generate images via the OpenAI API.
from funcspy.openai_funcs.openai_funcs import api_image_generation
# API settings
api_key = 'your_api_key'
model = 'dall-e-3'
prompt = 'a photograph of an astronaut riding a horse'
size = '1024x1024'
quality = 'standard'
# Send the request
response = api_image_generation(api_key, prompt, model, size, quality)
print(response)
Below is an example of how to use the api_vision
function to process images and answer questions about them using GPT-4 Turbo with Vision.
from funcspy.openai_funcs.openai_funcs import api_vision
# API settings
api_key = 'your_api_key'
model = 'gpt-4-turbo'
messages = {
"role": "user",
"content": [
{"type": "text", "text": "What’s in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
},
],
}
# Send the request
response = api_vision(api_key, messages, model)
print(response)
Below is an example of how to use the api_audio_transcription
function to transcribe audio using the OpenAI API.
from funcspy.openai_funcs.openai_funcs import api_audio_transcription
# API settings
api_key = 'your_api_key'
file_path = 'audio_file.mp3'
model = 'whisper-1'
# Send the request
response = api_audio_transcription(api_key, file_path, model)
print(response)
It is very important to download the tesseract binaries available in the root of our library on Github
Below is an example of how to use the ocr_tesseract
function to perform OCR on a PDF file using Tesseract with customizable settings.
from funcspy.pdf_funcs.ocr_funcs import ocr_tesseract
# OCR settings
pdf = 'path/to/your_pdf_file.pdf'
dpi = 300
file_output = 'output_filename'
return_text = True
config_tesseract = ''
limit_pages = None
lang = 'eng'
timeout = 120
# Perform OCR on the PDF
result = ocr_tesseract(
pdf=pdf,
dpi=dpi,
file_output=file_output,
return_text=return_text,
config_tesseract=config_tesseract,
limit_pages=limit_pages,
lang=lang,
timeout=timeout
)
# Output the result
print(result)
Below is an example of how to use the ocr_google_vision
function to perform OCR on a PDF file using Google Vision API with customizable settings.
from funcspy.pdf_funcs.ocr_funcs import ocr_google_vision
# OCR settings
pdf = 'path/to/your_pdf_file.pdf'
api_key = 'your_google_api_key'
dpi = 300
file_output = 'output_filename'
return_text = True
limit_pages = None
is_image = False
# Perform OCR on the PDF
result = ocr_google_vision(
pdf=pdf,
api_key=api_key,
dpi=dpi,
file_output=file_output,
return_text=return_text,
limit_pages=limit_pages,
is_image=is_image
)
# Output the result
print(result)
Below is an example of how to use the make_ocr_in_pdf_offline
function to extract text from a PDF file offline. This function only works with PDFs where the text is selectable.
from funcspy.pdf_funcs.ocr_funcs import make_ocr_in_pdf_offline
# OCR settings
path_pdf = 'path/to/your_pdf_file.pdf'
export_from_file_txt = 'output_text_file.txt' # Set to False if you do not want to export to a file
# Perform OCR on the PDF
result = make_ocr_in_pdf_offline(path_pdf, export_from_file_txt)
# Output the result
print(result)
Below is an example of how to use the extract_pages
function to extract a specified number of pages from a PDF file and create a new PDF file.
from funcspy.pdf_funcs.pdfutils.pdfutils import extract_pages
# PDF settings
original_pdf_path = 'path/to/original_pdf_file.pdf'
new_pdf_path = 'path/to/new_pdf_file.pdf'
num_pages = 10 # Number of pages to extract
# Extract pages from the original PDF
extract_pages(original_pdf_path, new_pdf_path, num_pages)
Below is an example of how to use the split_pdf
function to split a PDF file into multiple files based on a specified page interval.
from funcspy.pdf_funcs.pdfutils.pdfutils import split_pdf
# PDF settings
input_path = 'path/to/input_pdf_file.pdf'
output_dir = 'output_split'
interval = 30 # Number of pages in each split PDF
# Split the PDF
split_pdf(input_path, output_dir, interval)
Below is an example of how to use the text_to_pdf
function to convert text into a PDF file with specified margins, font, and font size.
from funcspy.pdf_funcs.pdfutils.pdfutils import text_to_pdf
# PDF settings
text = """This is a sample text to be converted into a PDF file.
You can customize the left and bottom margins, font, and font size."""
filename = 'output_text_pdf.pdf'
left_margin = 70
bottom_margin = 40
font = 'Helvetica'
font_size = 12
# Convert text to PDF
text_to_pdf(text, filename, left_margin, bottom_margin, font, font_size)
Below is an example of how to use the remove_accents
function to remove accents from a given text string.
from funcspy.python_funcs.python_funcs import remove_accents
# Text settings
text = "Olá, como você está?"
# Remove accents from text
result = remove_accents(text)
print(result)
Below is an example of how to use the random_sleep
function to pause execution for a random amount of time between specified minimum and maximum values.
from funcspy.python_funcs.python_funcs import random_sleep
# Sleep settings
min_time = 1 # Minimum sleep time in seconds
max_time = 5 # Maximum sleep time in seconds
# Execute random sleep
random_sleep(min_time, max_time)
Below is an example of how to use the create_dir_in_current_work_dir
function to create a directory in the current working directory.
from funcspy.python_funcs.python_funcs import create_dir_in_current_work_dir
# Directory settings
dir_name = 'new_directory'
print_value = True
create_directory = True
# Create directory in the current working directory
result = create_dir_in_current_work_dir(dir_name, print_value, create_directory)
print(result)
Below is an example of how to use the files_with_absolute_file_path
function to get a tuple of absolute file paths from a specified directory.
from funcspy.python_funcs.python_funcs import files_with_absolute_file_path
# Directory path
path_dir = 'your_directory'
# Get absolute file paths
result = files_with_absolute_file_path(path_dir)
print(result)
Below is an example of how to use the download_file_via_link
function to download a file from a specified link.
from funcspy.python_funcs.python_funcs import download_file_via_link
# Download settings
link = 'https://filesamples.com/samples/document/xlsx/sample3.xlsx'
file_path = 'myplan.xlsx'
directory = 'downloads' # Set to False if no directory is needed
# Download the file
download_file_via_link(link, file_path, directory)
Below is an example of how to use the take_only_numbers
function to extract only the numeric characters from a given string.
from funcspy.python_funcs.python_funcs import take_only_numbers
# String with numbers and other characters
string = "2122 asfs 245"
# Extract only numbers
result = take_only_numbers(string)
print(result)
Below is an example of how to use the read_json
function to read a JSON file and return its contents as a dictionary.
from funcspy.python_funcs.python_funcs import read_json
# JSON file path
file_json = 'path/to/your_file.json'
# Read JSON file
result = read_json(file_json)
print(result)
Below is an example of how to use the zip_dirs
function to zip multiple directories into a single zip file.
from funcspy.python_funcs.python_funcs import zip_dirs
# Folders to be zipped
folders = ['folder1', 'folder_with_files2', 'folder3']
zip_filename = 'myzip.zip'
# Zip the directories
zip_dirs(folders, zip_filename)
Below is an example of how to use the log
function to log messages with various levels, colors, and formats.
from funcspy.python_funcs.python_funcs import log
# Basic log message with color
log('This is an informational message', color='green')
# Log message with color and format
log('This is a formatted message', color='red', format='b')
# Warning level log with custom styling
log('This is a warning message!', level='w', color='yellow on black b i')
# Critical level log
log('Critical error occurred!', level='c', color='red on yellow b i s blink')
# Error level log
log('An error has been encountered', level='e', color='purple')
Below is an example of how to use the support_long_paths
function to adjust a path for long filename support on Windows.
from funcspy.python_funcs.python_funcs import support_long_paths
# Path settings
dos_path = 'your/very/long/path/to/a/directory/or/file'
encoding = None # Set to specific encoding if needed
# Get long path support
result = support_long_paths(dos_path, encoding)
print(result)
Below is an example of how to use the humanize_time
function to get a human-readable string representing the time elapsed from a given datetime or timestamp.
from funcspy.python_funcs.python_funcs import humanize_time
from datetime import datetime, timedelta
# Time settings
time = datetime.now() - timedelta(days=1, hours=5) # Example: 1 day and 5 hours ago
# Get human-readable time
result = humanize_time(time)
print(result)
Below is an example of how to use the clean_directory
function to delete all contents of a specified directory, with options for handling files with long names and retrying on permission errors.
from funcspy.python_funcs.python_funcs import clean_directory
import os
# Define the directory to clean
directory_to_clean = os.path.join(os.getcwd(), "example_directory")
# Clean the directory with default settings
clean_directory(directory_to_clean)
# Clean the directory with custom settings
clean_directory(directory_to_clean, timeout_for_clear=10, max_attempts=5, support_long_names=True)
MIT License
Questions, thanks and even financial help? Just call me on
- Linkedin: