Skip to content

fuxiAIlab/ProtoSemi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ProtoSemi

This is the official repository of paper Rethinking Noisy Label Learning in Real-world Annotation Scenarios.

Setup

This implemetation is based on Python3. To run the code, you need the following dependencies:

  • torch==1.7.1

  • torchvision==0.8.2

  • tensorboard==2.11.2

  • numpy

  • scikit-learn

You can simply run

pip install -r requirements.txt

Repository structure

We select some important files for detailed description.

|-- code 
    |-- data_preprocess # read the CIFAR-N dataset
    |-- config.py # hyperparameters
    |-- main.py 
    |-- model.py
    |-- myssl.py # semi-superivised learning
    |-- myutils.py 
    |-- sample_splits_backup.py # old sample split
    |-- sample_splits # new sample split
|-- data
    |-- CIFAR-N

Run

  1. You can run like the script in the following:
cd code
CUDA_VISIBLE_DEVICES=0 python -u main.py --dataset cifar100 --noise_type noisy100 --lr 0.02 --epochs 500 --weight_decay 5e-4 --sample_split proto --warmups 20 --ssl mixmatch  --cos_up_bound 0.99 --cos_low_bound 0.90 --proto_epochs 1
  1. You can reproduce the experimental results of our method by running the script:
cd code
bash reproduce.sh

Attribution

Parts of this code are based on the following repositories:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published