Skip to content

Commit

Permalink
small edits
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Aug 8, 2023
1 parent 4f8e685 commit 3dce59f
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 14 deletions.
12 changes: 6 additions & 6 deletions src/orthogonal-factorization-systems/function-classes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -179,25 +179,25 @@ module _
{l1 l2 : Level} (F : function-class l1 l1 l2)
where

has-identity-maps-has-equivalences-function-class :
has-equivalences-function-class F has-identity-maps-function-class F
has-identity-maps-has-equivalences-function-class has-equivs-F A =
has-equivs-F A A id is-equiv-id

htpy-has-identity-maps-function-class :
has-identity-maps-function-class F
{X Y : UU l1} (p : X = Y) type-Prop (F (map-eq p))
htpy-has-identity-maps-function-class has-ids-F {X} refl = has-ids-F X

has-equivalence-has-identity-maps-function-class :
has-identity-maps-function-class F
{X Y : UU l1} (e : X ≃ Y) type-Prop (F (map-equiv e))
{X Y : UU l1} (e : X ≃ Y) type-Prop (F (map-equiv e))
has-equivalence-has-identity-maps-function-class has-ids-F {X} {Y} e =
tr
( type-Prop ∘ F)
( ap pr1 (is-section-eq-equiv e))
( htpy-has-identity-maps-function-class has-ids-F (eq-equiv X Y e))

has-identity-maps-has-equivalences-function-class :
has-equivalences-function-class F has-identity-maps-function-class F
has-identity-maps-has-equivalences-function-class has-equivs-F A =
has-equivs-F A A id is-equiv-id

has-equivalences-has-identity-maps-function-class :
has-identity-maps-function-class F has-equivalences-function-class F
has-equivalences-has-identity-maps-function-class has-ids-F A B f is-equiv-f =
Expand Down
15 changes: 7 additions & 8 deletions src/orthogonal-factorization-systems/lifting-operations.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ and `g`_ is a choice of lifting square for every commuting square
A ------> B
| |
f| |g
| |
V V
X ------> Y.
```
Expand All @@ -36,20 +35,20 @@ Given a lifting operation we can say that `f` has a _left lifting structure_
with respect to `g` and that `g` has a _right lifting structure_ with respect to
`f`.

## Warning

This is the Curry–Howard interpretation of what is classically called _lifting
properties_. However, these are generally additional structure on the maps. For
the proof-irrelevant notion see
**Warning**: This is the Curry–Howard interpretation of what is classically
called _lifting properties_. However, these are generally additional structure
on the maps. For the proof-irrelevant notion see
[mere lifting properties](orthogonal-factorization-systems.mere-lifting-properties.md).

## Definition

We define lifting operations to be sections of the pullback-hom.
We define lifting operations to be [sections](foundation-core.sections.md) of
the [pullback-hom](orthogonal-factorization-systems.pullback-hom.md).

```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
{l1 l2 l3 l4 : Level}
{A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(f : A X) (g : B Y)
where

Expand Down

0 comments on commit 3dce59f

Please sign in to comment.