Skip to content

Fix median miscalculation for even-sized item list #2224

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 25 additions & 14 deletions cpp/perspective/src/cpp/sparse_tree.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1127,20 +1127,8 @@ t_stree::update_agg_table(t_uindex nidx, t_agg_update_info& info,
new_value.set(reduce_from_gstate<
std::function<t_tscalar(std::vector<t_tscalar>&)>>(gstate,
expression_master_table, spec.get_dependencies()[0].name(),
pkeys, [](std::vector<t_tscalar>& values) {
if (values.size() == 0) {
return t_tscalar();
} else if (values.size() == 1) {
return values[0];
} else {
std::vector<t_tscalar>::iterator middle
= values.begin() + (values.size() / 2);

std::nth_element(
values.begin(), middle, values.end());

return *middle;
}
pkeys, [&](std::vector<t_tscalar>& values) {
return get_aggregate_median(values);
}));

dst->set_scalar(dst_ridx, new_value);
Expand Down Expand Up @@ -2020,6 +2008,29 @@ t_stree::get_aggregate(t_index idx, t_index aggnum) const {
return extract_aggregate(m_aggspecs[aggnum], c, agg_ridx, agg_pridx);
}

t_tscalar
t_stree::get_aggregate_median(std::vector<t_tscalar>& values) const {
int size = values.size();
bool is_even_size = size % 2 == 0;

if (size == 0) {
return t_tscalar();
} else if (size == 1) {
return values[0];
} else if (is_even_size && values[0].is_floating_point()) {
t_tscalar median_average;
std::vector<t_tscalar>::iterator middle = values.begin() + (size / 2);
nth_element(values.begin(), middle, values.end());
median_average.set(
(*middle + *(middle - 1)) / static_cast<t_tscalar>(2));
return median_average;
} else {
std::vector<t_tscalar>::iterator middle = values.begin() + (size / 2);
std::nth_element(values.begin(), middle, values.end());
return *middle;
}
}

void
t_stree::get_child_indices(t_index idx, std::vector<t_index>& out_data) const {
t_index num_children = get_num_children(idx);
Expand Down
2 changes: 2 additions & 0 deletions cpp/perspective/src/include/perspective/sparse_tree.h
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,8 @@ class PERSPECTIVE_EXPORT t_stree {

t_tscalar get_aggregate(t_index idx, t_index aggnum) const;

t_tscalar get_aggregate_median(std::vector<t_tscalar>& values) const;

void get_child_indices(t_index idx, std::vector<t_index>& out_data) const;

void set_alerts_enabled(bool enabled_state);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2507,7 +2507,7 @@ const perspective = require("@finos/perspective");
const result = await view.to_columns();
expect(result).toEqual({
__ROW_PATH__: [[], [2.5], [4.5], [6.5], [8.5]],
'"x" + "z"': [6.5, 2.5, 4.5, 6.5, 8.5],
'"x" + "z"': [5.5, 2.5, 4.5, 6.5, 8.5],
x: [3, 1, 2, 3, 4],
y: [1000, 100, 200, 300, 400],
z: [12, 1.5, 2.5, 3.5, 4.5],
Expand Down
46 changes: 45 additions & 1 deletion python/perspective/perspective/tests/core/test_aggregates.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

from pytest import raises
from perspective import PerspectiveError, PerspectiveViewer,\
PerspectiveWidget, Aggregate
PerspectiveWidget, Aggregate, Table


class TestAggregates:
Expand Down Expand Up @@ -86,3 +86,47 @@ def test_aggregates_viewer_set_all(self):
for agg in Aggregate:
viewer.aggregates = {"a": agg}
assert viewer.aggregates == {"a": agg.value}

def get_median(self, input_data):
table = Table(data=input_data)
view = table.view(
columns=['Price'],
aggregates={'Price':'median'},
group_by=['Item'])

return view.to_json()[0]['Price']

def test_aggregate_median(self):
numeric_data = [
{'Item':'Book','Price':2.0},
{'Item':'Book','Price':3.0},
{'Item':'Book','Price':5.0},
{'Item':'Book','Price':4.0},
{'Item':'Book','Price':8.0},
{'Item':'Book','Price':9.0},
{'Item':'Book','Price':6.0},
]

non_numeric_data = [
{'Item':'Book','Price':'2'},
{'Item':'Book','Price':'3'},
{'Item':'Book','Price':'5'},
{'Item':'Book','Price':'4'},
{'Item':'Book','Price':'8'},
{'Item':'Book','Price':'9'},
{'Item':'Book','Price':'6'},
]

# Testing with numeric data
assert self.get_median(numeric_data) == 5.0 #List = [2.0,3.0,5.0,4.0,8.0,9.0,6.0], median = 5.0
assert self.get_median(numeric_data[:2]) == 2.5 #List = [2.0,3.0], median = 2.5
assert self.get_median(numeric_data[5:]) == 7.5 #List = [9.0,6.0], median = 7.5
assert self.get_median(numeric_data[1:]) == 5.5 #List = [3.0,5.0,4.0,8.0,9.0,6.0], median = 5.5
assert self.get_median(numeric_data[::2]) == 5.5 #List = [2.0,5.0,8.0,6.0], median = 5.5

# Testing with non-numeric data
assert self.get_median(non_numeric_data) == '5' #List = ['2','3','5','4','8','9','6'], median = '5'
assert self.get_median(non_numeric_data[:2]) == '3' #List = ['2','3'], median = '5'
assert self.get_median(non_numeric_data[5:]) == '9' #List = ['9','6'], median = '9'
assert self.get_median(non_numeric_data[1:]) == '6' #List = ['3','5','4','8','9','6'], median = '6'
assert self.get_median(non_numeric_data[::2]) == '6' #List = ['2','5','8','6'], median = '6'