This repository contains code and configurations for running AI debate experiments. The experiments involve different AI models debating on BoardgameQA1 and being judged by other AI models. The goal is to explore the capabilities of AI in generating and evaluating arguments in a persuasive debate format.2
Each experiment can be run using the following command pattern:
python main.py --config-file configs/<config_file>.json [additional options]
- Claude Haiku Self-Play:
python main.py --config-file configs/claude_haiku_self_play.json
- Claude Sonnet Self-Play:
python main.py --config-file configs/claude_sonnet_self_play.json
- Claude Sonnet Judging Haiku Debates:
python main.py --config-file configs/claude_sonnet_on_haikus.json
- Claude Sonnet Judging with Prompt 2:
python main.py --config-file configs/claude_sonnet_on_haikus_prompt2.json --variation USER_PROMPT2
- Deepseek Judging Haiku Debates:
python main.py --config-file configs/deepseek_on_haikus.json
- Deepseek Judging with Prompt 2:
python main.py --config-file configs/deepseek_on_haikus_prompt2.json --variation USER_PROMPT2
- GPT-4 Judging Haiku Debates:
python main.py --config-file configs/gpt4o_on_haikus.json
--sampled-data-path
: Path to sampled data file (default: "data/sampled_boardgame_qa.jsonl")--samples-per-label
: Number of samples per label (default: 20)--levels
: Difficulty levels to use (default: ["LowConflict", "HighConflict"])--excluded-labels
: Labels to exclude from processing (default: ["unknown"])--output-dir
: Output directory for results (default: "results")--variation
: Optional variation suffix for output directories (default: "")
Example with custom options:
python main.py --config-file configs/gpt4_on_haikus.json --samples-per-label 30 --output-dir custom_results
- Upload debate and judge records
- Clean up records for the webapp
Footnotes
-
Kazemi, M., Yuan, Q., Bhatia, D., Kim, N., Xu, X., Imbrasaite, V., & Ramachandran, D. (2024). Boardgameqa: A dataset for natural language reasoning with contradictory information. Advances in Neural Information Processing Systems, 36. [Link] ↩
-
Khan, A., Hughes, J., Valentine, D., Ruis, L., Sachan, K., Radhakrishnan, A., ... & Perez, E. (2024). Debating with more persuasive llms leads to more truthful answers. arXiv preprint arXiv:2402.06782. [Link] ↩