Skip to content

Easiest way of fine-tuning HuggingFace video classification models

License

Notifications You must be signed in to change notification settings

fcakyon/video-transformers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

26 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Easiest way of fine-tuning HuggingFace video classification models.

pypi version total downloads fcakyon twitter

πŸš€ Features

video-transformers uses:

and supports:

🏁 Installation

  • Install Pytorch:
conda install pytorch=1.11.0 torchvision=0.12.0 cudatoolkit=11.3 -c pytorch
  • Install pytorchvideo and transformers from main branch:
pip install git+https://github.com/facebookresearch/pytorchvideo.git
pip install git+https://github.com/huggingface/transformers.git
  • Install video-transformers:
pip install video-transformers

πŸ”₯ Usage

  • Prepare video classification dataset in such folder structure (.avi and .mp4 extensions are supported):
train_root
    label_1
        video_1
        video_2
        ...
    label_2
        video_1
        video_2
        ...
    ...
val_root
    label_1
        video_1
        video_2
        ...
    label_2
        video_1
        video_2
        ...
    ...
  • Fine-tune Timesformer (from HuggingFace) video classifier:
from torch.optim import AdamW
from video_transformers import VideoModel
from video_transformers.backbones.transformers import TransformersBackbone
from video_transformers.data import VideoDataModule
from video_transformers.heads import LinearHead
from video_transformers.trainer import trainer_factory
from video_transformers.utils.file import download_ucf6

backbone = TransformersBackbone("facebook/timesformer-base-finetuned-k400", num_unfrozen_stages=1)

download_ucf6("./")
datamodule = VideoDataModule(
    train_root="ucf6/train",
    val_root="ucf6/val",
    batch_size=4,
    num_workers=4,
    num_timesteps=8,
    preprocess_input_size=224,
    preprocess_clip_duration=1,
    preprocess_means=backbone.mean,
    preprocess_stds=backbone.std,
    preprocess_min_short_side=256,
    preprocess_max_short_side=320,
    preprocess_horizontal_flip_p=0.5,
)

head = LinearHead(hidden_size=backbone.num_features, num_classes=datamodule.num_classes)
model = VideoModel(backbone, head)

optimizer = AdamW(model.parameters(), lr=1e-4)

Trainer = trainer_factory("single_label_classification")
trainer = Trainer(datamodule, model, optimizer=optimizer, max_epochs=8)

trainer.fit()
  • Fine-tune ConvNeXT (from HuggingFace) + Transformer based video classifier:
from torch.optim import AdamW
from video_transformers import TimeDistributed, VideoModel
from video_transformers.backbones.transformers import TransformersBackbone
from video_transformers.data import VideoDataModule
from video_transformers.heads import LinearHead
from video_transformers.necks import TransformerNeck
from video_transformers.trainer import trainer_factory
from video_transformers.utils.file import download_ucf6

backbone = TimeDistributed(TransformersBackbone("facebook/convnext-small-224", num_unfrozen_stages=1))
neck = TransformerNeck(
    num_features=backbone.num_features,
    num_timesteps=8,
    transformer_enc_num_heads=4,
    transformer_enc_num_layers=2,
    dropout_p=0.1,
)

download_ucf6("./")
datamodule = VideoDataModule(
    train_root="ucf6/train",
    val_root="ucf6/val",
    batch_size=4,
    num_workers=4,
    num_timesteps=8,
    preprocess_input_size=224,
    preprocess_clip_duration=1,
    preprocess_means=backbone.mean,
    preprocess_stds=backbone.std,
    preprocess_min_short_side=256,
    preprocess_max_short_side=320,
    preprocess_horizontal_flip_p=0.5,
)

head = LinearHead(hidden_size=neck.num_features, num_classes=datamodule.num_classes)
model = VideoModel(backbone, head, neck)

optimizer = AdamW(model.parameters(), lr=1e-4)

Trainer = trainer_factory("single_label_classification")
trainer = Trainer(
    datamodule,
    model,
    optimizer=optimizer,
    max_epochs=8
)

trainer.fit()
  • Fine-tune Resnet18 (from HuggingFace) + GRU based video classifier:
from video_transformers import TimeDistributed, VideoModel
from video_transformers.backbones.transformers import TransformersBackbone
from video_transformers.data import VideoDataModule
from video_transformers.heads import LinearHead
from video_transformers.necks import GRUNeck
from video_transformers.trainer import trainer_factory
from video_transformers.utils.file import download_ucf6

backbone = TimeDistributed(TransformersBackbone("microsoft/resnet-18", num_unfrozen_stages=1))
neck = GRUNeck(num_features=backbone.num_features, hidden_size=128, num_layers=2, return_last=True)

download_ucf6("./")
datamodule = VideoDataModule(
    train_root="ucf6/train",
    val_root="ucf6/val",
    batch_size=4,
    num_workers=4,
    num_timesteps=8,
    preprocess_input_size=224,
    preprocess_clip_duration=1,
    preprocess_means=backbone.mean,
    preprocess_stds=backbone.std,
    preprocess_min_short_side=256,
    preprocess_max_short_side=320,
    preprocess_horizontal_flip_p=0.5,
)

head = LinearHead(hidden_size=neck.hidden_size, num_classes=datamodule.num_classes)
model = VideoModel(backbone, head, neck)

Trainer = trainer_factory("single_label_classification")
trainer = Trainer(
    datamodule,
    model,
    max_epochs=8
)

trainer.fit()
  • Perform prediction for a single file or folder of videos:
from video_transformers import VideoModel

model = VideoModel.from_pretrained(model_name_or_path)

model.predict(video_or_folder_path="video.mp4")
>> [{'filename': "video.mp4", 'predictions': {'class1': 0.98, 'class2': 0.02}}]

πŸ€— Full HuggingFace Integration

  • Push your fine-tuned model to the hub:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")

model.push_to_hub('model_name')
  • Load any pretrained video-transformer model from the hub:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")

model.from_pretrained('account_name/model_name')
  • Push your model to HuggingFace hub with auto-generated model-cards:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.push_to_hub('account_name/app_name')
  • (Incoming feature) Push your model as a Gradio app to HuggingFace Space:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.push_to_space('account_name/app_name')

πŸ“ˆ Multiple tracker support

  • Tensorboard tracker is enabled by default.

  • To add Neptune/Layer ... tracking:

from video_transformers.tracking import NeptuneTracker
from accelerate.tracking import WandBTracker

trackers = [
    NeptuneTracker(EXPERIMENT_NAME, api_token=NEPTUNE_API_TOKEN, project=NEPTUNE_PROJECT),
    WandBTracker(project_name=WANDB_PROJECT)
]

trainer = Trainer(
    datamodule,
    model,
    trackers=trackers
)

πŸ•ΈοΈ ONNX support

  • Convert your trained models into ONNX format for deployment:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.to_onnx(quantize=False, opset_version=12, export_dir="runs/exports/", export_filename="model.onnx")

πŸ€— Gradio support

  • Convert your trained models into Gradio App for deployment:
from video_transformers import VideoModel

model = VideoModel.from_pretrained("runs/exp/checkpoint")
model.to_gradio(examples=['video.mp4'], export_dir="runs/exports/", export_filename="app.py")

Contributing

Before opening a PR:

  • Install required development packages:
pip install -e ."[dev]"
  • Reformat with black and isort:
python -m tests.run_code_style format