Skip to content

πŸ“‘ Solution manual for the text book Neural Network Design 2nd Edition by Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, and Orlando De Jesus

License

Notifications You must be signed in to change notification settings

estamos/Neural-Network-Design-Solutions-Manual

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Neural Network Design Solutions Manual
Solutions Manual

Neural Network Design (2nd Edition)

Discussions Example PDF

Dear community, all of my repositories were, are and will be in the future completely free. If you appreciate my work, please consider making a donation to help me keep up my work. πŸ˜„

Buy Me A Coffee Paypal Donation

This is not a completed Solutions Manual. In case you need help with any exercise of the book or generally you have a question about Neural Networks you can have a look at Artificial Intelligence Stack Exchange, which is the best community to learn and discuss. You are also welcome to use discussions of this repository.

Book details

Title : Neural Network Design (2nd Edition)
Authors : Martin T. Hagan, Howard B. Demuth, Mark H. Beale, Orlando De Jesus
ISBN-10 : 0-9717321-1-6
ISBN-13 : 978-0-9717321-1-7
A PDF version of this textbook can be found at : http://hagan.okstate.edu/NNDesign.pdf

Chapters included :

Chapter Name
2 Neuron Model and Network Architectures
4 Perceptron Learning Rule
7 Supervised Hebbian Learning
8 Performance Surfaces and Optimum Points
9 Performance Optimization
10 Widrow-Hoff Learning
11 Backpropagation
12 Variations on Backpropagation
13 Generalization
14 Dynamic Networks (DNN)
15 Associative Learning
16 Competitive Networks (CNN)
17 Radial Basis Networks (RBF)

πŸ”Ά Note that some solutions contain Greek language text , you can either ignore it or use Google Translate .

Included solutions :

Chapter Exercise Add Date Update Date Author(s)
2 E2.6 01/17/20 01/17/20 @estamos
4 E4.8 01/17/20 01/17/20 @estamos
7 E7.1 E7.2 E7.4 E7.5 E7.6 E7.9 03/04/20 14/01/21 @estamos & @OUStudent
8 E8.1 E8.2 E8.4 E8.7 E8.10 01/16/21 01/16/21 @OUStudent
9 E9.1 E9.5 E7.7 E9.10 01/18/21 01/20/21 @OUStudent
10 E10.2 E10.4 E10.5 E10.6 E10.12 01/17/20 01/20/21 @estamos & @OUStudent
11 E11.1 E11.3 E11.6 E11.7 E11.9 E11.10 E11.11 E11.12 E11.13 E11.25 01/17/20 01/25/21 @estamos & @OUStudent
12 E12.2 E12.4 E12.7 E12.9 E12.11 01/17/20 01/25/20 @estamos & @OUStudent
13 E13.3 E13.5 13.13 02/12/21 02/12/21 @OUStudent
15 E15.1 E15.5 15.9 02/12/21 02/12/21 @OUStudent
16 E16.3 E16.5 E16.10 E16.13 01/17/20 02/12/21 @estamos & @OUStudent
17 E17.3 E17.5 E17.10 E17.11 01/17/20 02/12/21 @estamos & @OUStudent

More solutions available:

πŸ”Ά Note that for many exercises below enumeration is based on the 1st edition book .

Title : Neural Network Design
Authors : Martin T. Hagan, Howard B. Demuth, Mark H. Beale
ISBN : 978-0-534-94332-5
Publishing Company, Boston, MA, 1996

Exercises Download
E2.2 webpage
E2.3 webpage
E3.1 doc
E4.2 E4.3 E4.4 E4.5 E4.6 E4.8 webpage
E4.3 E4.8 doc
E8.5 E9.2 E9.6 doc
E10.4 E10.5 E11.7 E11.11 doc
E12.1 E12.4 E12.5 E12.6 doc
E13.5 E14.2 E14.4 E14.8 doc
E15.6 E15.7 E14.4 E14.8 doc
E16.1 E16.3 E16.5 E16.7 doc

Relative webpages

Demos

This is a set of demonstrations paired with the Neural Network Design & Neural Network Design: Deep Learning books written in Python. You can read more about nndesigndemos at PyPI of project.

Authors : Amir Jafari, Martin Hagan, Pedro UrΓ­a

Installation

pip install nndesigndemos

Virtual environment (recommended)

python3 -m venv env
source env/bin/activate  # macOS/Linux
env\Scripts\activate.bat  # Windows
pip install nndesigndemos

Dependencies

  • Python 3.5+

  • PyQt5 5.14.1

  • NumPy 1.18.1

  • SciPy 1.4.1

  • Matplotlib 3.1.2

Usage

from nndesigndemos import nndtoc
nndtoc()