Skip to content

Commit

Permalink
Revert "FullyConnected Bias performance improvement on GPU (apache#16039
Browse files Browse the repository at this point in the history
)"

This reverts commit a5e698a.
  • Loading branch information
eric-haibin-lin committed Dec 14, 2019
1 parent ecda000 commit 745c25c
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 285 deletions.
76 changes: 8 additions & 68 deletions src/common/cuda_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,6 @@ extern __cuda_fake_struct blockIdx;
#include <cublas_v2.h>
#include <curand.h>

#include <vector>

#define STATIC_ASSERT_CUDA_VERSION_GE(min_version) \
static_assert(CUDA_VERSION >= min_version, "Compiled-against CUDA version " \
QUOTEVALUE(CUDA_VERSION) " is too old, please upgrade system to version " \
Expand Down Expand Up @@ -429,41 +427,16 @@ int get_rows_per_block(size_t row_size, int num_threads_per_block);
} // namespace common
} // namespace mxnet

/*! \brief Maximum number of GPUs */
constexpr size_t kMaxNumGpus = 64;

// The implementations below assume that accesses of 32-bit ints are inherently atomic and
// can be read/written by multiple threads without locks. The values held should be < 2^31.

/*!
* \brief Return an attribute GPU `device_id`.
* \param device_id The device index of the cuda-capable gpu of interest.
* \param cached_values An array of attributes for already-looked-up GPUs.
* \param attr The attribute, by number.
* \param attr_name A string representation of the attribute, for error messages.
* \return the gpu's attribute value.
*/
inline int cudaAttributeLookup(int device_id, std::vector<int32_t> *cached_values,
cudaDeviceAttr attr, const char *attr_name) {
if (device_id < 0 || device_id >= static_cast<int>(cached_values->size())) {
LOG(FATAL) << attr_name << "(device_id) called with invalid id: " << device_id;
} else if ((*cached_values)[device_id] < 0) {
int temp = -1;
CUDA_CALL(cudaDeviceGetAttribute(&temp, attr, device_id));
(*cached_values)[device_id] = static_cast<int32_t>(temp);
}
return (*cached_values)[device_id];
}

/*!
* \brief Determine major version number of the gpu's cuda compute architecture.
* \param device_id The device index of the cuda-capable gpu of interest.
* \return the major version number of the gpu's cuda compute architecture.
*/
inline int ComputeCapabilityMajor(int device_id) {
static std::vector<int32_t> capability_major(kMaxNumGpus, -1);
return cudaAttributeLookup(device_id, &capability_major,
cudaDevAttrComputeCapabilityMajor, "ComputeCapabilityMajor");
int major = 0;
CUDA_CALL(cudaDeviceGetAttribute(&major,
cudaDevAttrComputeCapabilityMajor, device_id));
return major;
}

/*!
Expand All @@ -472,9 +445,10 @@ inline int ComputeCapabilityMajor(int device_id) {
* \return the minor version number of the gpu's cuda compute architecture.
*/
inline int ComputeCapabilityMinor(int device_id) {
static std::vector<int32_t> capability_minor(kMaxNumGpus, -1);
return cudaAttributeLookup(device_id, &capability_minor,
cudaDevAttrComputeCapabilityMinor, "ComputeCapabilityMinor");
int minor = 0;
CUDA_CALL(cudaDeviceGetAttribute(&minor,
cudaDevAttrComputeCapabilityMinor, device_id));
return minor;
}

/*!
Expand All @@ -488,40 +462,6 @@ inline int SMArch(int device_id) {
return 10 * major + minor;
}

/*!
* \brief Return the number of streaming multiprocessors of GPU `device_id`.
* \param device_id The device index of the cuda-capable gpu of interest.
* \return the gpu's count of streaming multiprocessors.
*/
inline int MultiprocessorCount(int device_id) {
static std::vector<int32_t> sm_counts(kMaxNumGpus, -1);
return cudaAttributeLookup(device_id, &sm_counts,
cudaDevAttrMultiProcessorCount, "MultiprocessorCount");
}

/*!
* \brief Return the shared memory size in bytes of each of the GPU's streaming multiprocessors.
* \param device_id The device index of the cuda-capable gpu of interest.
* \return the shared memory size per streaming multiprocessor.
*/
inline int MaxSharedMemoryPerMultiprocessor(int device_id) {
static std::vector<int32_t> max_smem_per_mutiprocessor(kMaxNumGpus, -1);
return cudaAttributeLookup(device_id, &max_smem_per_mutiprocessor,
cudaDevAttrMaxSharedMemoryPerMultiprocessor,
"MaxSharedMemoryPerMultiprocessor");
}

/*!
* \brief Return whether the GPU `device_id` supports cooperative-group kernel launching.
* \param device_id The device index of the cuda-capable gpu of interest.
* \return the gpu's ability to run cooperative-group kernels.
*/
inline bool SupportsCooperativeLaunch(int device_id) {
static std::vector<int32_t> coop_launch(kMaxNumGpus, -1);
return cudaAttributeLookup(device_id, &coop_launch,
cudaDevAttrCooperativeLaunch, "SupportsCooperativeLaunch");
}

/*!
* \brief Determine whether a cuda-capable gpu's architecture supports float16 math.
* Assume not if device_id is negative.
Expand Down
10 changes: 0 additions & 10 deletions src/operator/mxnet_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -249,16 +249,6 @@ inline int get_num_threads<cpu>(const int N) {
LOG(FATAL) << "Unknown type enum " << type; \
}

template <typename T>
struct AccType {
using type = T;
};

template <>
struct AccType<mshadow::half::half_t> {
using type = float;
};

#define MXNET_REAL_ACC_TYPE_SWITCH(type, DType, AType, ...)\
switch (type) { \
case mshadow::kFloat32: \
Expand Down
221 changes: 14 additions & 207 deletions src/operator/nn/fully_connected-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@
#include <vector>
#include <string>
#include <utility>
#include <algorithm>
#include "../operator_common.h"
#include "../elemwise_op_common.h"
#include "../linalg.h"
Expand Down Expand Up @@ -60,7 +59,6 @@ struct FullyConnectedParam : public dmlc::Parameter<FullyConnectedParam> {
int num_hidden;
bool no_bias;
bool flatten;

DMLC_DECLARE_PARAMETER(FullyConnectedParam) {
// TODO(bing) add support for boolean
DMLC_DECLARE_FIELD(num_hidden).set_lower_bound(1)
Expand All @@ -77,66 +75,6 @@ struct FullyConnectedParam : public dmlc::Parameter<FullyConnectedParam> {
}
};

template<typename DType>
void AddBias(Tensor<cpu, 1, DType> bias, Tensor<cpu, 2, DType> data,
Tensor<cpu, 2, DType> out, Stream<cpu>*) {
using namespace mshadow;
using namespace mshadow::expr;
out += repmat(bias, data.size(0));
}

#if defined(__CUDACC__)

namespace {
constexpr int nthreads_addbias = 256;
constexpr int nthreads_addbiasgrad_phase1 = 512;
constexpr int nthreads_addbiasgrad_phase2 = 128;
constexpr int threads_per_warp = 32;

inline int ceil_div(int x, int y) {
return (x + y - 1) / y;
}
} // namespace

template <typename DType, typename LType>
__global__ void add_bias_kernel(DType* mat, DType* bias, size_t lead_dim, size_t bias_length) {
__shared__ LType scratch[nthreads_addbias * 2];
const index_t N = bias_length * sizeof(DType)/sizeof(LType);
const index_t base = blockIdx.x * N;
LType* const mat_aligned = reinterpret_cast<LType*>(mat) + base;
const LType* const bias_aligned = reinterpret_cast<LType*>(bias);
LType* const scratch_bias_load = scratch + threadIdx.x;
DType* const scratch_bias = reinterpret_cast<DType*>(scratch_bias_load);
LType* const scratch_mat_load = scratch_bias_load + nthreads_addbias;
DType* const scratch_mat = reinterpret_cast<DType*>(scratch_mat_load);
for (index_t i = threadIdx.x; i < N; i += blockDim.x) {
*scratch_bias_load = bias_aligned[i];
*scratch_mat_load = mat_aligned[i];
#pragma unroll
for (int j = 0; j < sizeof(LType)/sizeof(DType); ++j) {
scratch_mat[j] += scratch_bias[j];
}
mat_aligned[i] = *scratch_mat_load;
}
}

template<typename DType>
void AddBias(Tensor<gpu, 1, DType> bias, Tensor<gpu, 2, DType> data,
Tensor<gpu, 2, DType> out, Stream<gpu>* s) {
int ltype = mxnet::common::cuda::get_load_type(bias.shape_[0] * sizeof(DType));
MXNET_LOAD_TYPE_SWITCH(ltype, LType, {
add_bias_kernel<DType, LType><<<data.size(0),
nthreads_addbias,
0,
Stream<gpu>::GetStream(s)>>>(out.dptr_,
bias.dptr_,
data.size(0),
bias.shape_[0]);
});
}

#endif // __CUDACC__

template<typename xpu, typename DType>
void FCForward(const OpContext &ctx, const FullyConnectedParam &param,
const std::vector<TBlob> &in_data, const std::vector<OpReqType> &req,
Expand Down Expand Up @@ -184,153 +122,10 @@ void FCForward(const OpContext &ctx, const FullyConnectedParam &param,
<< "Incomplete bias tensor detected: bias.data().shape[1] != weight.data().shape[0]."
" This is not supported by FCForward. If bias is in row_sparse format, please"
" make sure all row ids are present.";
AddBias(bias, data, out, s);
out += repmat(bias, data.size(0));
}
}

#if defined (__CUDACC__)

template<typename LType, typename DType, typename AType>
__global__ void AddBiasGradKernelPhase1(AType * temp_space, const DType* grad,
const size_t lead_dim, const size_t other_dim) {
constexpr int num_warps = nthreads_addbiasgrad_phase1 / threads_per_warp;
const int values_per_read = sizeof(LType) >= sizeof(DType) ? sizeof(LType) / sizeof(DType) : 1;
const size_t stride = lead_dim / values_per_read;
__shared__ AType scratch[threads_per_warp * num_warps * values_per_read];
LType * my_scratch_load = &(reinterpret_cast<LType *>(scratch)[threadIdx.x]);
DType * my_values_load = reinterpret_cast<DType *>(my_scratch_load);
AType * my_values_acc = &(scratch[threadIdx.x * values_per_read]);
AType acc[values_per_read]; // NOLINT(*)
#pragma unroll
for (int i = 0; i < values_per_read; ++i) {
acc[i] = 0;
}
const size_t offset = blockIdx.x * threads_per_warp;
const int my_warp = threadIdx.x / threads_per_warp;
const int my_id = threadIdx.x % threads_per_warp;
const LType* aligned_grad = reinterpret_cast<const LType*>(grad);
const int rows_per_block = (other_dim + gridDim.y - 1) / gridDim.y;
const size_t start_row = my_warp + rows_per_block * blockIdx.y;
const size_t end_row = min(other_dim, static_cast<size_t>(rows_per_block * (blockIdx.y + 1)));
if (offset + my_id < stride) {
for (size_t i = start_row; i < end_row; i += num_warps) {
*my_scratch_load = aligned_grad[i * stride + offset + my_id];
#pragma unroll
for (int j = 0; j < values_per_read; ++j) {
acc[j] += static_cast<AType>(my_values_load[j]);
}
}
}
__syncthreads();
#pragma unroll
for (int i = 0; i < values_per_read; ++i) {
my_values_acc[i] = acc[i];
}

__syncthreads();

for (int i = num_warps / 2; i > 0; i /= 2) {
if (my_warp < i) {
const int shared_offset = values_per_read * i * threads_per_warp;
#pragma unroll
for (int j = 0; j < values_per_read; ++j) {
my_values_acc[j] += my_values_acc[j + shared_offset];
}
}
__syncthreads();
}

if (threadIdx.x < min(threads_per_warp * values_per_read,
static_cast<int>(lead_dim - values_per_read * offset))) {
const size_t offset_out = values_per_read * offset +
blockIdx.y * lead_dim;
temp_space[offset_out + threadIdx.x] = scratch[threadIdx.x];
}
}

template <typename DType, typename AType>
__global__ void AddBiasGradKernelPhase2(const AType * temp_space, DType * out,
int lead_dim, int n_blocks, OpReqType req) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < lead_dim) {
AType acc = 0;
for (int i = tid; i < lead_dim * n_blocks; i += lead_dim) {
acc += temp_space[i];
}
KERNEL_ASSIGN(out[tid], req, static_cast<DType>(acc));
}
}

template<typename DType>
void AddBiasGrad(const TBlob& in_grad,
Tensor<gpu, 2, DType> grad,
OpReqType req,
int num_hidden,
const OpContext& ctx) {
if (req == kNullOp) return;
using AType = typename mxnet_op::AccType<DType>::type;
mshadow::Stream<gpu> *s = ctx.get_stream<gpu>();
Tensor<gpu, 1, DType> gbias = in_grad.get<gpu, 1, DType>(s);
TBlob grad_blob = TBlob(grad);
TBlob gbias_blob = TBlob(gbias);
mxnet::TShape x(1, 0);
mxnet::TShape small;
if (shape_assign(&gbias_blob.shape_, Shape2(num_hidden, 1))) {
small = gbias_blob.shape_;
} else {
small = ReduceAxesShapeImpl(grad_blob.shape_, dmlc::optional<mxnet::TShape>(x), true, false);
}
const int N = small.Size();
int ltype = mxnet::common::cuda::get_load_type(N * sizeof(DType));
const int M = grad_blob.shape_.Size() / N;
MXNET_LOAD_TYPE_SWITCH(ltype, LType, {
const unsigned int blocks_x = ceil_div(N * sizeof(DType),
threads_per_warp * sizeof(LType));
const unsigned int preferred_number_of_blocks = 2 *
MultiprocessorCount(ctx.run_ctx.ctx.dev_id);
const unsigned int blocks_y = std::max(preferred_number_of_blocks / blocks_x, 1u);
const dim3 n_blocks = {blocks_x, blocks_y, 1};
auto scratch_space = ctx.requested[fullc::kTempSpace]
.get_space_typed<gpu, 1, AType>(mshadow::Shape1(N * blocks_y), s);
auto stream = mshadow::Stream<gpu>::GetStream(s);
AddBiasGradKernelPhase1<LType><<<n_blocks,
nthreads_addbiasgrad_phase1,
0,
stream>>>(scratch_space.dptr_,
grad.dptr_, N, M);
const int nblocks_phase2 = ceil_div(N, nthreads_addbiasgrad_phase2);
AddBiasGradKernelPhase2<<<nblocks_phase2,
nthreads_addbiasgrad_phase2,
0,
stream>>>(scratch_space.dptr_,
gbias.dptr_, N,
blocks_y, req);
});
}
#endif

template<typename DType>
void AddBiasGrad(const TBlob& in_grad,
Tensor<cpu, 2, DType> grad,
OpReqType req,
int num_hidden,
const OpContext& ctx) {
mshadow::Stream<cpu> *s = ctx.get_stream<cpu>();
Tensor<cpu, 1, DType> gbias = in_grad.get<cpu, 1, DType>(s);
TBlob grad_blob = TBlob(grad);
TBlob gbias_blob = TBlob(gbias);
mxnet::TShape x(1, 0);
mxnet::TShape small;
if (shape_assign(&gbias_blob.shape_, Shape2(num_hidden, 1))) {
small = gbias_blob.shape_;
} else {
small = ReduceAxesShapeImpl(grad_blob.shape_, dmlc::optional<mxnet::TShape>(x), true, false);
}
ReduceAxesComputeImpl<cpu, mshadow::red::sum, false, false,
mshadow_op::identity>(ctx, {grad_blob}, {req},
{in_grad}, small);
}

template<typename xpu, typename DType>
void FCBackward(const OpContext &ctx, const FullyConnectedParam &param,
const std::vector<TBlob> &out_grad, const std::vector<TBlob> &in_data,
Expand Down Expand Up @@ -374,7 +169,19 @@ void FCBackward(const OpContext &ctx, const FullyConnectedParam &param,
linalg_gemm(grad, data, gwmat, true, false, s, req[fullc::kWeight]);
// gradient of bias
if (!param.no_bias) {
AddBiasGrad(in_grad[fullc::kBias], grad, req[fullc::kBias], param.num_hidden, ctx);
Tensor<xpu, 1, DType> gbias = in_grad[fullc::kBias].get<xpu, 1, DType>(s);
TBlob grad_blob = TBlob(grad);
TBlob gbias_blob = TBlob(gbias);
mxnet::TShape x(1, 0);
mxnet::TShape small;
if (shape_assign(&gbias_blob.shape_, Shape2(param.num_hidden, 1))) {
small = gbias_blob.shape_;
} else {
small = ReduceAxesShapeImpl(grad_blob.shape_, dmlc::optional<mxnet::TShape>(x), true, false);
}
ReduceAxesComputeImpl<xpu, mshadow::red::sum, false, false,
mshadow_op::identity>(ctx, {grad_blob}, {req[fullc::kBias]},
{in_grad[fullc::kBias]}, small);
}
// gradient of data
// Legacy approach shown here for comparison:
Expand Down

0 comments on commit 745c25c

Please sign in to comment.