Using CNN-InceptionV4 we reached 82% accuracy. 29 Epochs. Our paper can be found here.
There are 37 class 3025 images in ResistorNet-DirençNet.
-
10 1/4W: 70
-
100 R 1/4W: 116
-
10 R 1W: 62
-
10 R 2W: 98
-
11 M 1/2W: 72
-
150 R 1/4W: 73
-
150 R 1/8W: 71
-
15 R 1/4W: 115
-
180 K 1/2W: 98
-
1 K 1/4W: 81
-
1 K 2W: 62
-
1 M 1/4W: 80
-
2.2 K 1/4W: 62
-
20 K 1/4W: 57
-
220 K 1/4W: 48
-
220 R 2W: 90
-
22 R 1/4W: 37
-
24 K 1/2W: 90
-
270 K 1/4: 75
-
27 R 1W: 54
-
2 R 1W: 76
-
3.9 K 1/4W: 80
-
330 R 1/4W: 51
-
33 K 2W: 123
-
4.7 K 1/4W: 90
-
470 R 1/4W: 173
-
470 R 1W: 66
-
5.1 K 1/4W: 40
-
5.6 K/4W: 87
-
56 K 1W: 49
-
5.1 K 1/4W: 77
-
6.8 R 1/4W: 73
-
620 R 1/4W: 81
-
68 K 1W: 95
-
7.5 K 1/4W: 80
-
8.2 K 1/4W: 74
-
820 R 1/4W: 97
-
4700Mohm : 102
If you are using the dataset, please give a citation of this repository. The dataset can be downloaded here.
- Image size: 700 x 700 pixels
- Color space: RGB
- Number of classes: 37
- Resolution : 72 DPI
The devices used were Samsung Note 5, Nikon D7000.
- Prof.Dr. Raif BAYIR - Academic Advisor
- Eralp ÖZCAN
- İlker ÖNALAN and Members of Artificial Intelligence and Deep Learning Lab.