Skip to content

eralpozcan/ResistorNet-Dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

ResistorNet-Dataset

By Karabuk University Artificial Intelligence and Deep Learning Laboratory

Using CNN-InceptionV4 we reached 82% accuracy. 29 Epochs. Our paper can be found here.

Dataset

There are 37 class 3025 images in ResistorNet-DirençNet.

  • 10 1/4W: 70

  • 100 R 1/4W: 116

  • 10 R 1W: 62

  • 10 R 2W: 98

  • 11 M 1/2W: 72

  • 150 R 1/4W: 73

  • 150 R 1/8W: 71

  • 15 R 1/4W: 115

  • 180 K 1/2W: 98

  • 1 K 1/4W: 81

  • 1 K 2W: 62

  • 1 M 1/4W: 80

  • 2.2 K 1/4W: 62

  • 20 K 1/4W: 57

  • 220 K 1/4W: 48

  • 220 R 2W: 90

  • 22 R 1/4W: 37

  • 24 K 1/2W: 90

  • 270 K 1/4: 75

  • 27 R 1W: 54

  • 2 R 1W: 76

  • 3.9 K 1/4W: 80

  • 330 R 1/4W: 51

  • 33 K 2W: 123

  • 4.7 K 1/4W: 90

  • 470 R 1/4W: 173

  • 470 R 1W: 66

  • 5.1 K 1/4W: 40

  • 5.6 K/4W: 87

  • 56 K 1W: 49

  • 5.1 K 1/4W: 77

  • 6.8 R 1/4W: 73

  • 620 R 1/4W: 81

  • 68 K 1W: 95

  • 7.5 K 1/4W: 80

  • 8.2 K 1/4W: 74

  • 820 R 1/4W: 97

  • 4700Mohm : 102

    If you are using the dataset, please give a citation of this repository. The dataset can be downloaded here.

Details of datasets:

  • Image size: 700 x 700 pixels
  • Color space: RGB
  • Number of classes: 37
  • Resolution : 72 DPI

The devices used were Samsung Note 5, Nikon D7000.

Project Executives:

  • Prof.Dr. Raif BAYIR - Academic Advisor
  • Eralp ÖZCAN
  • İlker ÖNALAN and Members of Artificial Intelligence and Deep Learning Lab.