add results for CoDi-Embedding-V1#258
add results for CoDi-Embedding-V1#258spring-quan wants to merge 1 commit intoembeddings-benchmark:mainfrom spring-quan:codi_embedding_v1
Conversation
Model Results ComparisonReference models: Results for
|
| task_name | Youtu-RAG/CoDi-Embedding-V1 | google/gemini-embedding-001 | intfloat/multilingual-e5-large | Max result |
|---|---|---|---|---|
| AFQMC | 0.7153 | nan | 0.3301 | 0.7225 |
| ATEC | 0.6225 | nan | 0.398 | 0.6464 |
| BQ | 0.7263 | nan | 0.4644 | 0.8125 |
| CLSClusteringP2P | 0.7906 | nan | nan | 0.8225 |
| CLSClusteringS2S | 0.7710 | nan | nan | 0.7387 |
| CMedQAv1-reranking | 0.8822 | nan | 0.6765 | 0.9156 |
| CMedQAv2-reranking | 0.8713 | nan | 0.6672 | 0.9248 |
| CmedqaRetrieval | 0.5475 | nan | 0.2866 | 0.5658 |
| Cmnli | 0.8952 | nan | nan | 0.9306 |
| CovidRetrieval | 0.9323 | 0.7913 | 0.7561 | 0.9606 |
| DuRetrieval | 0.8969 | nan | 0.853 | 0.9423 |
| EcomRetrieval | 0.7138 | nan | 0.5467 | 0.7764 |
| IFlyTek | 0.5303 | nan | 0.4186 | 0.5770 |
| JDReview | 0.9109 | nan | 0.8054 | 0.9169 |
| LCQMC | 0.7967 | nan | 0.7595 | 0.8070 |
| MMarcoReranking | 0.2874 | nan | 0.2912 | 0.4689 |
| MMarcoRetrieval | 0.8566 | nan | 0.792 | 0.9033 |
| MedicalRetrieval | 0.7032 | nan | 0.5144 | 0.7562 |
| MultilingualSentiment | 0.8094 | nan | 0.709 | 0.8263 |
| Ocnli | 0.8868 | nan | nan | 0.9215 |
| OnlineShopping | 0.9487 | nan | 0.9045 | 0.9716 |
| PAWSX | 0.5986 | nan | 0.1463 | 0.6644 |
| QBQTC | 0.5905 | nan | nan | 0.7145 |
| STSB | 0.8404 | 0.8465 | 0.8108 | 0.9140 |
| T2Reranking | 0.6759 | 0.6795 | 0.6632 | 0.7283 |
| T2Retrieval | 0.8768 | nan | 0.7607 | 0.8926 |
| TNews | 0.5852 | nan | 0.488 | 0.5922 |
| ThuNewsClusteringP2P | 0.8805 | nan | nan | 0.8879 |
| ThuNewsClusteringS2S | 0.9024 | nan | nan | 0.8790 |
| VideoRetrieval | 0.7796 | nan | 0.5828 | 0.8384 |
| Waimai | 0.9047 | nan | 0.863 | 0.9174 |
| Average | 0.7655 | 0.7725 | 0.6037 | 0.8044 |
|
@spring-quan a few of the values seems surprisingly high given the training data, any chance there might have been leakage (or that you have missed a few of these datasets in the training data annotations?) - can I please ask you to double check these Also seems like the reference link in the model meta refer to the wrong model (feel free to make a PR to fix it) |
|
I will check the training data next and close this PR for now. |
Checklist
mteb/models/this can be as an API. Instruction on how to add a model can be found here