Skip to content
Merged
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"test": {
"num_samples": 102198,
"number_of_characters": 47870352,
"documents_text_statistics": {
"total_text_length": 47719757,
"min_text_length": 9,
"average_text_length": 472.01951591046225,
"max_text_length": 8686,
"unique_texts": 101097
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 150595,
"min_text_length": 30,
"average_text_length": 136.78019981834694,
"max_text_length": 404,
"unique_texts": 1099
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 3401,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 3.089009990917348,
"max_relevant_docs_per_query": 5,
"unique_relevant_docs": 1123
},
"top_ranked_statistics": null
}
}
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"test": {
"num_samples": 132137,
"number_of_characters": 43323279,
"documents_text_statistics": {
"total_text_length": 43311486,
"min_text_length": 11,
"average_text_length": 328.5778249819823,
"max_text_length": 8576,
"unique_texts": 131814
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 11793,
"min_text_length": 6,
"average_text_length": 36.62422360248447,
"max_text_length": 100,
"unique_texts": 321
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 11620,
"min_relevant_docs_per_query": 31,
"average_relevant_docs_per_query": 36.08695652173913,
"max_relevant_docs_per_query": 1288,
"unique_relevant_docs": 32537
},
"top_ranked_statistics": null
}
}
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"test": {
"num_samples": 106558,
"number_of_characters": 48164581,
"documents_text_statistics": {
"total_text_length": 47886101,
"min_text_length": 9,
"average_text_length": 472.6783768310499,
"max_text_length": 8689,
"unique_texts": 101308
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 278480,
"min_text_length": 11,
"average_text_length": 53.04380952380952,
"max_text_length": 196,
"unique_texts": 5124
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 6254,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.1912380952380952,
"max_relevant_docs_per_query": 15,
"unique_relevant_docs": 1324
},
"top_ranked_statistics": null
}
}
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"test": {
"num_samples": 117974,
"number_of_characters": 35927363,
"documents_text_statistics": {
"total_text_length": 35335613,
"min_text_length": 22,
"average_text_length": 316.47705838625023,
"max_text_length": 4105,
"unique_texts": 111651
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 591750,
"min_text_length": 21,
"average_text_length": 93.61651637399146,
"max_text_length": 280,
"unique_texts": 6321
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 12642,
"min_relevant_docs_per_query": 2,
"average_relevant_docs_per_query": 2.0,
"max_relevant_docs_per_query": 2,
"unique_relevant_docs": 11874
},
"top_ranked_statistics": null
}
}
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"dev": {
"num_samples": 107153,
"number_of_characters": 33316879,
"documents_text_statistics": {
"total_text_length": 33200903,
"min_text_length": 2,
"average_text_length": 320.30199218561575,
"max_text_length": 1712,
"unique_texts": 103641
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 115976,
"min_text_length": 8,
"average_text_length": 33.15494568324757,
"max_text_length": 190,
"unique_texts": 3498
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 3700,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.0577472841623785,
"max_relevant_docs_per_query": 4,
"unique_relevant_docs": 3698
},
"top_ranked_statistics": null
}
}
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/NanoNQ-VN.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"test": {
"num_samples": 104095,
"number_of_characters": 52312680,
"documents_text_statistics": {
"total_text_length": 52220289,
"min_text_length": 10,
"average_text_length": 510.98673124908265,
"max_text_length": 10245,
"unique_texts": 102181
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 92391,
"min_text_length": 22,
"average_text_length": 48.62684210526316,
"max_text_length": 113,
"unique_texts": 1900
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 2283,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.201578947368421,
"max_relevant_docs_per_query": 4,
"unique_relevant_docs": 2283
},
"top_ranked_statistics": null
}
}
30 changes: 30 additions & 0 deletions mteb/descriptive_stats/Retrieval/TVPLRetrieval.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"test": {
"num_samples": 20561,
"number_of_characters": 10832770,
"documents_text_statistics": {
"total_text_length": 9929303,
"min_text_length": 9,
"average_text_length": 938.8524016641452,
"max_text_length": 6319,
"unique_texts": 10573
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 903467,
"min_text_length": 13,
"average_text_length": 90.48242363545317,
"max_text_length": 228,
"unique_texts": 9985
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 11158,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.1174762143214823,
"max_relevant_docs_per_query": 8,
"unique_relevant_docs": 10576
},
"top_ranked_statistics": null
}
}
20 changes: 14 additions & 6 deletions mteb/tasks/retrieval/vie/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from .argu_ana_vn_retrieval import ArguAnaVN
from .climate_fevervn_retrieval import ClimateFEVERVN
from .climate_fevervn_retrieval import ClimateFEVERVN, NanoClimateFEVERVN
from .cqa_dupstack_android_vn_retrieval import CQADupstackAndroidVN
from .cqa_dupstack_gis_vn_retrieval import CQADupstackGisVN
from .cqa_dupstack_mathematica_vn_retrieval import CQADupstackMathematicaVN
Expand All @@ -10,19 +10,20 @@
from .cqa_dupstack_unix_vn_retrieval import CQADupstackUnixVN
from .cqa_dupstack_webmasters_vn_retrieval import CQADupstackWebmastersVN
from .cqa_dupstack_wordpress_vn_retrieval import CQADupstackWordpressVN
from .db_pedia_vn_retrieval import DBPediaVN
from .fevervn_retrieval import FEVERVN
from .db_pedia_vn_retrieval import DBPediaVN, NanoDBPediaVN
from .fevervn_retrieval import FEVERVN, NanoFEVERVN
from .fi_qa2018_vn_retrieval import FiQA2018VN
from .green_node_table_markdown_retrieval import GreenNodeTableMarkdownRetrieval
from .hotpot_qavn_retrieval import HotpotQAVN
from .msmarcovn_retrieval import MSMARCOVN
from .hotpot_qavn_retrieval import HotpotQAVN, NanoHotpotQAVN
from .msmarcovn_retrieval import MSMARCOVN, NanoMSMARCOVN
from .nf_corpus_vn_retrieval import NFCorpusVN
from .nqvn_retrieval import NQVN
from .nqvn_retrieval import NQVN, NanoNQVN
from .quora_vn_retrieval import QuoraVN
from .sci_fact_vn_retrieval import SciFactVN
from .scidocsvn_retrieval import SCIDOCSVN
from .touche2020_vn_retrieval import Touche2020VN
from .treccovidvn_retrieval import TRECCOVIDVN
from .tvpl_retrieval import TVPLRetrieval
from .vie_qu_ad_retrieval import VieQuADRetrieval
from .zac_legal_text_retrieval import ZacLegalTextRetrieval

Expand All @@ -49,8 +50,15 @@
"GreenNodeTableMarkdownRetrieval",
"HotpotQAVN",
"NFCorpusVN",
"NanoClimateFEVERVN",
"NanoDBPediaVN",
"NanoFEVERVN",
"NanoHotpotQAVN",
"NanoMSMARCOVN",
"NanoNQVN",
"QuoraVN",
"SciFactVN",
"TVPLRetrieval",
"Touche2020VN",
"VieQuADRetrieval",
"ZacLegalTextRetrieval",
Expand Down
39 changes: 39 additions & 0 deletions mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,42 @@ class ClimateFEVERVN(AbsTaskRetrieval):
""",
adapted_from=["ClimateFEVER"],
)


class NanoClimateFEVERVN(AbsTaskRetrieval):
metadata = TaskMetadata(
name="NanoClimateFEVER-VN",
description="NanoClimateFEVERVN is a small version of A translated dataset from CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
dataset={
"path": "GreenNode/nano-climate-fever-vn",
"revision": "1852e852f07403d4529a8520d52b91ff6d57869b",
},
type="Retrieval",
category="t2t",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="ndcg_at_10",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Encyclopaedic", "Written"],
task_subtypes=["Claim verification"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
prompt={
"query": "Given a claim about climate change, retrieve documents that support or refute the claim"
},
adapted_from=["ClimateFEVER-VN"],
)
39 changes: 39 additions & 0 deletions mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,42 @@ class DBPediaVN(AbsTaskRetrieval):
""",
adapted_from=["DBPedia"],
)


class NanoDBPediaVN(AbsTaskRetrieval):
metadata = TaskMetadata(
name="NanoDBPedia-VN",
description="NanoDBPediaVN is a small version of A translated dataset from DBpedia-Entity is a standard test collection for entity search over the DBpedia knowledge base The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
reference="https://github.com/iai-group/DBpedia-Entity/",
dataset={
"path": "GreenNode/nano-dbpedia-vn",
"revision": "bbc3259bc63bf1e250d7034024092cc3230d5850",
},
type="Retrieval",
category="t2t",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="ndcg_at_10",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Written", "Encyclopaedic"],
task_subtypes=[],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
prompt={
"query": "Given a query, retrieve relevant entity descriptions from DBPedia"
},
adapted_from=["DBPedia-VN"],
)
39 changes: 39 additions & 0 deletions mteb/tasks/retrieval/vie/fevervn_retrieval.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,42 @@ class FEVERVN(AbsTaskRetrieval):
""",
adapted_from=["FEVER"],
)


class NanoFEVERVN(AbsTaskRetrieval):
metadata = TaskMetadata(
name="NanoFEVER-VN",
dataset={
"path": "GreenNode/nano-fever-vn",
"revision": "457ca6b058ed19b28f2359e2d816d7527af6bef8",
},
description="NanoFEVERVN is a small version of A translated dataset from FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
reference="https://fever.ai/",
type="Retrieval",
category="t2t",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="ndcg_at_10",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Encyclopaedic", "Written"],
task_subtypes=["Claim verification"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
prompt={
"query": "Given a claim, retrieve documents that support or refute the claim"
},
adapted_from=["FEVER-VN"],
)
Loading