Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions mteb/descriptive_stats/Retrieval/FinQARetrieval.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
{
"test": {
"number_of_characters": 165000,
"num_samples": 1800,
"num_queries": 900,
"num_documents": 900,
"min_document_length": 75,
"average_document_length": 183.33,
"max_document_length": 600,
"unique_documents": 900,
"min_query_length": 3,
"average_query_length": 3.0,
"max_query_length": 3,
"unique_queries": 900,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.0,
"max_relevant_docs_per_query": 1,
"unique_relevant_docs": 900
}
}
1 change: 1 addition & 0 deletions mteb/tasks/Retrieval/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@
from .eng.FaithDialRetrieval import *
from .eng.FeedbackQARetrieval import *
from .eng.FEVERRetrieval import *
from .eng.FinQARetrieval import *
from .eng.FiQA2018Retrieval import *
from .eng.GovReportRetrieval import *
from .eng.HagridRetrieval import *
Expand Down
91 changes: 91 additions & 0 deletions mteb/tasks/Retrieval/eng/FinQARetrieval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
from __future__ import annotations

from mteb.abstasks.TaskMetadata import TaskMetadata

from ....abstasks.AbsTaskRetrieval import AbsTaskRetrieval


class FinQARetrieval(AbsTaskRetrieval):
metadata = TaskMetadata(
name="FinQARetrieval",
description="A financial retrieval task based on FinQA dataset containing numerical reasoning questions over financial documents. Each query is a financial question requiring numerical computation (e.g., 'What is the percentage change in operating expenses from 2019 to 2020?'), and the corpus contains financial document text with tables and numerical data. The task is to retrieve the correct financial information that enables answering the numerical question. Queries are numerical reasoning questions while the corpus contains financial text passages with embedded tables, figures, and quantitative financial data from earnings reports.",
reference="https://huggingface.co/datasets/embedding-benchmark/FinQA",
dataset={
"path": "embedding-benchmark/FinQA",
"revision": "bdd1903ce03153129480bfc14b710e3d612c1efd",
},
type="Retrieval",
category="s2p",
modalities=["text"],
eval_splits=["test"],
eval_langs=["eng-Latn"],
main_score="ndcg_at_10",
date=("2021-01-01", "2021-12-31"),
domains=["Financial"],
task_subtypes=["Question answering"],
license="mit",
annotations_creators="expert-annotated",
dialect=[],
sample_creation="found",
bibtex_citation=r"""
@article{chen2021finqa,
author = {Chen, Zhiyu and Chen, Wenhu and Smiley, Charese and Shah, Sameena and Borova, Iana and Langdon, Dylan and Moussa, Reema and Beane, Matt and Huang, Ting-Hao and Routledge, Bryan and Wang, William Yang},
journal = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
title = {FinQA: A Dataset of Numerical Reasoning over Financial Data},
year = {2021},
}
""",
prompt={
"query": "Given a financial numerical reasoning question, retrieve relevant financial data that helps answer the question"
},
)

def load_data(self, **kwargs):
if self.data_loaded:
return

from datasets import load_dataset

# Load the three configurations
corpus_ds = load_dataset(
self.metadata.dataset["path"],
"corpus",
revision=self.metadata.dataset["revision"],
)["corpus"]
queries_ds = load_dataset(
self.metadata.dataset["path"],
"queries",
revision=self.metadata.dataset["revision"],
)["queries"]
qrels_ds = load_dataset(
self.metadata.dataset["path"],
"default",
revision=self.metadata.dataset["revision"],
)["test"]

# Initialize data structures with 'test' split
corpus = {}
queries = {}
relevant_docs = {}

# Process corpus
for item in corpus_ds:
corpus[item["id"]] = {"title": "", "text": item["text"]}

# Process queries
for item in queries_ds:
queries[item["id"]] = item["text"]

# Process qrels (relevant documents)
for item in qrels_ds:
query_id = item["query-id"]
if query_id not in relevant_docs:
relevant_docs[query_id] = {}
relevant_docs[query_id][item["corpus-id"]] = int(item["score"])

# Organize data by splits as expected by MTEB
self.corpus = {"test": corpus}
self.queries = {"test": queries}
self.relevant_docs = {"test": relevant_docs}

self.data_loaded = True
Loading