Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
162 changes: 162 additions & 0 deletions mteb/models/granite_vision_embedding_models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
from __future__ import annotations

import logging
from functools import partial
from typing import Any

import torch
from PIL import Image
from torch.utils.data import DataLoader
from transformers import AutoProcessor, AutoModel
from transformers.utils.import_utils import is_flash_attn_2_available


from mteb.encoder_interface import PromptType
from mteb.model_meta import ModelMeta
from mteb.requires_package import (
requires_image_dependencies,
requires_package,
)

logger = logging.getLogger(__name__)


class GraniteVisionEmbeddingWrapper:
def __init__(
self,
model_name: str,
revision: str | None = None,
device: str | None = None,
**kwargs,
):
requires_image_dependencies()

self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.model_name = model_name

# Load model
self.mdl = AutoModel.from_pretrained(
model_name,
revision=revision,
device_map=self.device,
trust_remote_code=True,
**kwargs,
)

self.mdl.eval()

# Load processor
self.processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True, revision=revision
)

def encode(self, sentences, **kwargs):
return self.get_text_embeddings(texts=sentences, **kwargs)

def encode_input(self, inputs):
return self.mdl(**inputs)

def get_image_embeddings(
self,
images,
batch_size: int = 16,
**kwargs,
):
import torchvision.transforms.functional as F

all_embeds = []

if isinstance(images, DataLoader):
iterator = images
else:
iterator = DataLoader(images, batch_size=batch_size)

with torch.no_grad():
for batch in iterator:
# batch may be list of tensors or PIL
imgs = [
F.to_pil_image(b.to("cpu")) if not isinstance(b, Image.Image) else b
for b in batch
]
inputs = self.processor.process_images(imgs)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outs = self.encode_input(inputs)
all_embeds.extend(outs.cpu().to(torch.float32))

padded = torch.nn.utils.rnn.pad_sequence(
all_embeds, batch_first=True, padding_value=0
)
return padded

def get_text_embeddings(
self,
texts,
batch_size: int = 32,
**kwargs,
):
all_embeds = []
with torch.no_grad():
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
inputs = self.processor.process_queries(batch)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outs = self.encode_input(inputs)
all_embeds.extend(outs.cpu().to(torch.float32))

padded = torch.nn.utils.rnn.pad_sequence(
all_embeds, batch_first=True, padding_value=0
)
return padded

def get_fused_embeddings(
self,
texts: list[str] | None = None,
images: list[Image.Image] | DataLoader | None = None,
*,
task_name: str | None = None,
prompt_type: PromptType | None = None,
batch_size: int = 32,
fusion_mode="sum",
**kwargs: Any,
):
raise NotImplementedError(
"Fused embeddings are not supported yet. Please use get_text_embeddings or get_image_embeddings."
)

def calculate_probs(self, text_embeddings, image_embeddings):
scores = self.similarity(text_embeddings, image_embeddings)
return (scores * 100).softmax(dim=-1)

def similarity(self, a, b):
return self.processor.score_multi_vector(a, b)


granite_vision_embedding = ModelMeta(
loader=partial(
GraniteVisionEmbeddingWrapper,
model_name="ibm-granite/granite-vision-3.3-2b-embedding",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
if is_flash_attn_2_available()
else None,
revision="cee615db64d89d1552a4ee39c50f25c0fc5c66ca",
),
name="ibm-granite/granite-vision-3.3-2b-embedding",
languages=["eng-Latn"],
revision="cee615db64d89d1552a4ee39c50f25c0fc5c66ca",
release_date="2025-06-11",
modalities=["image", "text"],
n_parameters=2_980_000_000,
memory_usage_mb=11351,
max_tokens=128000,
embed_dim=128,
license="apache-2.0",
open_weights=True,
public_training_code=None,
public_training_data=None,
framework=["PyTorch"],
reference="https://huggingface.co/ibm-granite/granite-vision-3.3-2b-embedding",
similarity_fn_name="max_sim",
use_instructions=True,
training_datasets=None, # proprietary, not public
)
2 changes: 2 additions & 0 deletions mteb/models/overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
geogpt_models,
gme_v_models,
google_models,
granite_vision_embedding_models,
gritlm_models,
gte_models,
hinvec_models,
Expand Down Expand Up @@ -128,6 +129,7 @@
e5_v,
evaclip_models,
google_models,
granite_vision_embedding_models,
gritlm_models,
gte_models,
hinvec_models,
Expand Down
Loading