Skip to content
1 change: 1 addition & 0 deletions mteb/abstasks/TaskMetadata.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@
"machine-translated and verified",
"machine-translated and localized",
"LM-generated and verified",
"machine-translated and LM verified",
"rendered",
"multiple",
]
Expand Down
12 changes: 12 additions & 0 deletions mteb/tasks/Classification/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,18 @@
from .tur.TurkishProductSentimentClassification import *
from .ukr.UkrFormalityClassification import *
from .urd.UrduRomanSentimentClassification import *
from .vie.AmazonCounterfactualVNClassification import *
from .vie.AmazonPolarityVNClassification import *
from .vie.AmazonReviewsVNClassification import *
from .vie.Banking77VNClassification import *
from .vie.EmotionVNClassification import *
from .vie.ImdbVNClassification import *
from .vie.MassiveIntentVNClassification import *
from .vie.MassiveScenarioVNClassification import *
from .vie.MTOPDomainVNClassification import *
from .vie.MTOPIntentVNClassification import *
from .vie.ToxicConversationsVNClassification import *
from .vie.TweetSentimentExtractionVNClassification import *
from .vie.VieStudentFeedbackClassification import *
from .zho.CMTEBClassification import *
from .zho.YueOpenriceReviewClassification import (
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class AmazonCounterfactualVNClassification(AbsTaskClassification):
num_samples = 32

metadata = TaskMetadata(
name="AmazonCounterfactualVNClassification",
dataset={
"path": "GreenNode/amazon-counterfactual-vn",
"revision": "b48bc27d383cfca5b6a47135a52390fa5f66b253",
},
description="""A collection of translated Amazon customer reviews annotated for counterfactual detection pair classification.
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
""",
reference="https://arxiv.org/abs/2104.06893",
category="s2s",
type="Classification",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Reviews", "Written"],
task_subtypes=["Counterfactual Detection"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["AmazonCounterfactualClassification"],
)
45 changes: 45 additions & 0 deletions mteb/tasks/Classification/vie/AmazonPolarityVNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class AmazonPolarityVNClassification(AbsTaskClassification):
metadata = TaskMetadata(
name="AmazonPolarityVNClassification",
description="""A collection of translated Amazon customer reviews annotated for polarity classification.
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
""",
reference="https://huggingface.co/datasets/amazon_polarity",
dataset={
"path": "GreenNode/amazon-polarity-vn",
"revision": "4e9a0d6e6bd97ab32f23c50c043d751eed2a5f8a",
},
type="Classification",
category="s2s",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Reviews", "Written"],
task_subtypes=["Sentiment/Hate speech"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["AmazonPolarityClassification"],
)
44 changes: 44 additions & 0 deletions mteb/tasks/Classification/vie/AmazonReviewsVNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class AmazonReviewsVNClassification(AbsTaskClassification):
metadata = TaskMetadata(
name="AmazonReviewsVNClassification",
dataset={
"path": "GreenNode/amazon-reviews-multi-vn",
"revision": "27da94deb6d4f44af789a3d70750fa506b79f189",
},
description="""A collection of translated Amazon reviews specifically designed to aid research in multilingual text classification.
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
reference="https://arxiv.org/abs/2010.02573",
category="s2s",
type="Classification",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Reviews", "Written"],
task_subtypes=["Emotion classification"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["AmazonReviewsClassification"],
)
44 changes: 44 additions & 0 deletions mteb/tasks/Classification/vie/Banking77VNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class Banking77VNClassification(AbsTaskClassification):
metadata = TaskMetadata(
name="Banking77VNClassification",
description="""A translated dataset composed of online banking queries annotated with their corresponding intents.
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
reference="https://arxiv.org/abs/2003.04807",
dataset={
"path": "GreenNode/banking77-vn",
"revision": "42541b07c25a49604be129fba6d70b752be229c1",
},
type="Classification",
category="s2s",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Written"],
task_subtypes=[],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["Banking77Classification"],
)
46 changes: 46 additions & 0 deletions mteb/tasks/Classification/vie/EmotionVNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class EmotionVNClassification(AbsTaskClassification):
num_samples = 16

metadata = TaskMetadata(
name="EmotionVNClassification",
description="""Emotion is a translated dataset of Vietnamese from English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
reference="https://www.aclweb.org/anthology/D18-1404",
dataset={
"path": "GreenNode/emotion-vn",
"revision": "797a93c0dd755ebf5818fbf54d0e0a024df9216d",
},
type="Classification",
category="s2s",
eval_splits=["validation", "test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Social", "Written"],
task_subtypes=["Sentiment/Hate speech"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["EmotionClassification"],
)
44 changes: 44 additions & 0 deletions mteb/tasks/Classification/vie/ImdbVNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class ImdbVNClassification(AbsTaskClassification):
metadata = TaskMetadata(
name="ImdbVNClassification",
description="""A translated dataset of large movie reviews annotated for sentiment classification.
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
dataset={
"path": "GreenNode/imdb-vn",
"revision": "0dccb383ee26c90c99d03c8674cf40de642f099a",
},
reference="http://www.aclweb.org/anthology/P11-1015",
type="Classification",
category="p2p",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Reviews", "Written"],
task_subtypes=["Sentiment/Hate speech"],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["ImdbClassification"],
)
44 changes: 44 additions & 0 deletions mteb/tasks/Classification/vie/MTOPDomainVNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class MTOPDomainVNClassification(AbsTaskClassification):
metadata = TaskMetadata(
name="MTOPDomainVNClassification",
dataset={
"path": "GreenNode/mtop-domain-vn",
"revision": "6e1ec8c54c018151c77472d94b1c0765230cf6ca",
},
description="""A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
reference="https://arxiv.org/pdf/2008.09335.pdf",
category="s2s",
type="Classification",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Spoken", "Spoken"],
task_subtypes=[],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["MTOPDomainClassification"],
)
44 changes: 44 additions & 0 deletions mteb/tasks/Classification/vie/MTOPIntentVNClassification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
from __future__ import annotations

from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
from mteb.abstasks.TaskMetadata import TaskMetadata


class MTOPIntentVNClassification(AbsTaskClassification):
metadata = TaskMetadata(
name="MTOPIntentVNClassification",
dataset={
"path": "GreenNode/mtop-intent-vn",
"revision": "c4e81a5c9a813a0142d905e261e5a446cc6fbc4a",
},
description="""A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
- Applies advanced embedding models to filter the translations.
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
reference="https://arxiv.org/pdf/2008.09335.pdf",
category="s2s",
type="Classification",
eval_splits=["test"],
eval_langs=["vie-Latn"],
main_score="accuracy",
date=("2025-07-29", "2025-07-30"),
license="cc-by-sa-4.0",
annotations_creators="derived",
dialect=[],
sample_creation="machine-translated and LM verified",
domains=["Spoken", "Spoken"],
task_subtypes=[],
bibtex_citation=r"""
@misc{pham2025vnmtebvietnamesemassivetext,
archiveprefix = {arXiv},
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
eprint = {2507.21500},
primaryclass = {cs.CL},
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
url = {https://arxiv.org/abs/2507.21500},
year = {2025},
}
""",
adapted_from=["MTOPIntentClassification"],
)
Loading
Loading