Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
128 changes: 128 additions & 0 deletions mteb/models/listconranker.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
from __future__ import annotations

from typing import Any

import torch
from torch.utils.data import DataLoader
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)

from mteb.abstasks.task_metadata import TaskMetadata
from mteb.model_meta import ModelMeta
from mteb.models.rerankers_custom import RerankerWrapper
from mteb.types import BatchedInput, PromptType


class ListConRanker(RerankerWrapper):
def __init__(self, model_name_or_path: str = None, **kwargs) -> None:
super().__init__(model_name_or_path, **kwargs)

self.model = AutoModelForSequenceClassification.from_pretrained(
model_name_or_path, trust_remote_code=True, torch_dtype=torch.float16
)
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

if not self.device:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_args = {}
if self.fp_options:
model_args["torch_dtype"] = self.fp_options

self.model = self.model.to(self.device)
self.model.eval()

@torch.inference_mode()
def predict(
self,
inputs1: DataLoader[BatchedInput],
inputs2: DataLoader[BatchedInput],
*,
task_metadata: TaskMetadata,
hf_split: str,
hf_subset: str,
prompt_type: PromptType | None = None,
**kwargs: Any,
):
queries = [text for batch in inputs1 for text in batch["query"]]
passages = [text for batch in inputs2 for text in batch["text"]["text"]]

assert len(queries) == len(passages)

final_scores = []
query = queries[0]
tmp_passages = []
if "traditional_inference" in kwargs and kwargs["traditional_inference"]:
for q, p in zip(queries, passages):
if query == q:
tmp_passages.append(p)
else:
query_passages_tuples = [[query] + tmp_passages]
scores = self.model.multi_passage(query_passages_tuples)
final_scores += scores
query = q
tmp_passages = [p]
if len(tmp_passages) > 0:
query_passages_tuples = [[query] + tmp_passages]
scores = self.model.multi_passage(query_passages_tuples)
final_scores += scores
else:
for q, p in zip(queries, passages):
if query == q:
tmp_passages.append(p)
else:
query_passages = [query] + tmp_passages
scores = self.model.multi_passage_in_iterative_inference(
query_passages
)
final_scores += scores
query = q
tmp_passages = [p]
if len(tmp_passages) > 0:
query_passages = [query] + tmp_passages
scores = self.model.multi_passage_in_iterative_inference(query_passages)
final_scores += scores

assert len(final_scores) == len(queries), (
f"Expected {len(queries)} scores, got {len(final_scores)}"
)

return final_scores


listconranker_training_datasets = {
"CMedQAv1-reranking": ["train"],
"CMedQAv2-reranking": ["train"],
"MMarcoReranking": ["train"],
"T2Reranking": ["train"],
# 'Huatuo26M-Lite': ['train'],
# 'MARC': ['train'],
# 'XL-sum-chinese_simplified': ['train'],
# 'CSL': ['train'],
}

listconranker = ModelMeta(
loader=ListConRanker,
loader_kwargs=dict(
fp_options="float16",
),
name="ByteDance/ListConRanker",
languages=["zho-Hans"],
open_weights=True,
revision="95ae6a5f422a916bc36520f0f3e198e7d91520a0",
release_date="2024-12-11",
n_parameters=401_000_000,
memory_usage_mb=1242,
similarity_fn_name="cosine",
training_datasets=listconranker_training_datasets,
embed_dim=1024,
license="mit",
max_tokens=512,
reference="https://huggingface.co/ByteDance/ListConRanker",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
is_cross_encoder=True,
)
2 changes: 2 additions & 0 deletions mteb/models/overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
lens_models,
lgai_embedding_models,
linq_models,
listconranker,
llm2clip_models,
llm2vec_models,
misc_models,
Expand Down Expand Up @@ -132,6 +133,7 @@
lens_models,
lgai_embedding_models,
linq_models,
listconranker,
llm2clip_models,
llm2vec_models,
misc_models,
Expand Down