-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support for Formula corrections + tests
- Loading branch information
Showing
4 changed files
with
391 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
# SPDX-FileCopyrightText: 2023-present Enrico Guiraud <[email protected]> | ||
# | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
from dataclasses import dataclass | ||
from enum import Enum, auto | ||
from typing import TypeAlias, Union | ||
|
||
import correctionlib.schemav2 as schema | ||
import jax | ||
import jax.numpy as jnp # atan2 | ||
from correctionlib._core import Formula, FormulaAst | ||
from correctionlib._core import Variable as CPPVariable | ||
|
||
import correctionlib_gradients._utils as utils | ||
|
||
|
||
@dataclass | ||
class Literal: | ||
value: float | ||
|
||
|
||
@dataclass | ||
class Variable: | ||
name: str | ||
|
||
|
||
@dataclass | ||
class Parameter: | ||
idx: int | ||
|
||
|
||
class BinaryOp(Enum): | ||
EQUAL = auto() | ||
NOTEQUAL = auto() | ||
GREATER = auto() | ||
LESS = auto() | ||
GREATEREQ = auto() | ||
LESSEQ = auto() | ||
MINUS = auto() | ||
PLUS = auto() | ||
DIV = auto() | ||
TIMES = auto() | ||
POW = auto() | ||
ATAN2 = auto() | ||
MAX = auto() | ||
MIN = auto() | ||
|
||
|
||
class UnaryOp(Enum): | ||
NEGATIVE = auto() | ||
LOG = auto() | ||
LOG10 = auto() | ||
EXP = auto() | ||
ERF = auto() | ||
SQRT = auto() | ||
ABS = auto() | ||
COS = auto() | ||
SIN = auto() | ||
TAN = auto() | ||
ACOS = auto() | ||
ASIN = auto() | ||
ATAN = auto() | ||
COSH = auto() | ||
SINH = auto() | ||
TANH = auto() | ||
ACOSH = auto() | ||
ASINH = auto() | ||
ATANH = auto() | ||
|
||
|
||
FormulaNode: TypeAlias = Union[Literal, Variable, Parameter, "Op"] | ||
|
||
|
||
@dataclass | ||
class Op: | ||
op: BinaryOp | UnaryOp | ||
children: tuple[FormulaNode, ...] | ||
|
||
|
||
class FormulaDAG: | ||
def __init__(self, f: schema.Formula, inputs: list[schema.Variable]): | ||
cpp_formula = Formula.from_string(f.json(), [CPPVariable.from_string(v.json()) for v in inputs]) | ||
self.input_names = [v.name for v in inputs] | ||
self.node: FormulaNode = self._make_node(cpp_formula.ast) | ||
|
||
def evaluate(self, inputs: dict[str, jax.Array]) -> jax.Array: | ||
res = self._eval_node(self.node, inputs) | ||
return res | ||
|
||
def _eval_node(self, node: FormulaNode, inputs: dict[str, jax.Array]) -> jax.Array: | ||
match node: | ||
case Literal(value): | ||
res_size = utils.get_result_size(inputs) | ||
if res_size == 0: | ||
return jnp.array(value) | ||
else: | ||
return jnp.repeat(value, res_size) | ||
case Variable(name): | ||
return inputs[name] | ||
case Op(op=BinaryOp(), children=children): | ||
c1, c2 = children | ||
ev = self._eval_node | ||
i = inputs | ||
match node.op: | ||
case BinaryOp.EQUAL: | ||
return (ev(c1, i) == ev(c2, i)) + 0.0 | ||
case BinaryOp.NOTEQUAL: | ||
return (ev(c1, i) != ev(c2, i)) + 0.0 | ||
case BinaryOp.GREATER: | ||
return (ev(c1, i) > ev(c2, i)) + 0.0 | ||
case BinaryOp.LESS: | ||
return (ev(c1, i) < ev(c2, i)) + 0.0 | ||
case BinaryOp.GREATEREQ: | ||
return (ev(c1, i) >= ev(c2, i)) + 0.0 | ||
case BinaryOp.LESSEQ: | ||
return (ev(c1, i) <= ev(c2, i)) + 0.0 | ||
case BinaryOp.MINUS: | ||
return ev(c1, i) - ev(c2, i) | ||
case BinaryOp.PLUS: | ||
return ev(c1, i) + ev(c2, i) | ||
case BinaryOp.DIV: | ||
return ev(c1, i) / ev(c2, i) | ||
case BinaryOp.TIMES: | ||
return ev(c1, i) * ev(c2, i) | ||
case BinaryOp.POW: | ||
return ev(c1, i) ** ev(c2, i) | ||
case BinaryOp.ATAN2: | ||
return jnp.arctan2(ev(c1, i), ev(c2, i)) | ||
case BinaryOp.MAX: | ||
return jnp.max(jnp.stack([ev(c1, i), ev(c2, i)])) | ||
case BinaryOp.MIN: | ||
return jnp.min(jnp.stack([ev(c1, i), ev(c2, i)])) | ||
case _: | ||
msg = f"Type of formula node not recognized ({node}). This should never happen." | ||
raise RuntimeError(msg) | ||
|
||
return jax.array() # never reached | ||
|
||
def _make_node(self, ast: FormulaAst) -> FormulaNode: | ||
match ast.nodetype: | ||
case FormulaAst.NodeType.LITERAL: | ||
return Literal(ast.data) | ||
case FormulaAst.NodeType.VARIABLE: | ||
return Variable(self.input_names[ast.data]) | ||
case FormulaAst.NodeType.BINARY: | ||
match ast.data: | ||
# TODO reduce code duplication (code generation?) | ||
case FormulaAst.BinaryOp.EQUAL: | ||
return Op( | ||
op=BinaryOp.EQUAL, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.NOTEQUAL: | ||
return Op( | ||
op=BinaryOp.NOTEQUAL, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.GREATER: | ||
return Op( | ||
op=BinaryOp.GREATER, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.LESS: | ||
return Op( | ||
op=BinaryOp.LESS, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.GREATEREQ: | ||
return Op( | ||
op=BinaryOp.GREATEREQ, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.LESSEQ: | ||
return Op( | ||
op=BinaryOp.LESSEQ, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.MINUS: | ||
return Op( | ||
op=BinaryOp.MINUS, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.PLUS: | ||
return Op( | ||
op=BinaryOp.PLUS, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.DIV: | ||
return Op( | ||
op=BinaryOp.DIV, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.TIMES: | ||
return Op( | ||
op=BinaryOp.TIMES, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.POW: | ||
return Op( | ||
op=BinaryOp.POW, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.ATAN2: | ||
return Op( | ||
op=BinaryOp.ATAN2, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.MAX: | ||
return Op( | ||
op=BinaryOp.MAX, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case FormulaAst.BinaryOp.MIN: | ||
return Op( | ||
op=BinaryOp.MIN, | ||
children=(self._make_node(ast.children[0]), self._make_node(ast.children[1])), | ||
) | ||
case _: # pragma: no cover | ||
msg = f"Type of formula node not recognized ({ast.nodetype.name}). This should never happen." | ||
raise ValueError(msg) | ||
|
||
# never reached, just to make mypy happy | ||
return Literal(0.0) # pragma: no cover |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# SPDX-FileCopyrightText: 2023-present Enrico Guiraud <[email protected]> | ||
# | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
import jax | ||
|
||
|
||
def get_result_size(inputs: dict[str, jax.Array]) -> int: | ||
"""Calculate what size the result of a DAG evaluation should have. | ||
The size is equal to the one, common size (shape[0], or number or rows) of all | ||
the non-scalar inputs we require, or 0 if all inputs are scalar. | ||
An error is thrown in case the shapes of two non-scalar inputs differ. | ||
""" | ||
result_shape: tuple[int, ...] = () | ||
for value in inputs.values(): | ||
if result_shape == (): | ||
result_shape = value.shape | ||
elif value.shape != result_shape: | ||
msg = "The shapes of all non-scalar inputs should match." | ||
raise ValueError(msg) | ||
if result_shape != (): | ||
return result_shape[0] | ||
else: | ||
return 0 |
Oops, something went wrong.