Skip to content
forked from Roxot/AEVNMT.pt

PyTorch implementation of Auto-Encoding Variational Neural Machine Translation

License

Notifications You must be signed in to change notification settings

eelcovdw/AEVNMT.pt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Auto-Encoding Variational Neural Machine Translation (PyTorch)

This repository contains a PyTorch implementation of our Auto-Encoding Variational Neural Machine Translation paper published at the 4th Workshop on Representation Learning for NLP (RepL4NLP). Note that the results in the paper are based on a TensorFlow implementation.

Installation

You will need python3.6 or newer:

virtualenv -p python3.6 ~/envs/aevnmt.pt
source ~/envs/aevnmt.pt/bin/activate

You will need an extension to torch distributions which you can install easily:

git clone https://github.com/probabll/dists.pt.git
cd dists.pt
pip install -r requirements.txt
pip install .
cd ..

git clone https://github.com/probabll/dgm.pt.git
cd dgm.pt
pip install -r requirements.txt
pip install .

Then you will need AEVNMT.pt:

git clone https://github.com/Roxot/AEVNMT.pt.git 
cd AEVNMT.pt
pip install -r requirements.txt

For developers, we recommend

python install --editable .

For other users, we recommend

pip install .

Command line interface

python -u -m aevnmt.train \
    --hparams_file HYPERPARAMETERS.json \ 
    --training_prefix BILINGUAL-DATA \
    --validation_prefix VALIDATION-DATA \ 
    --src SRC --tgt TGT \
    --output_dir OUTPUT-DIRECTORY

python -u -m aevnmt.translate \
    --output_dir OUTPUT-DIRECTORY \
    --verbose true \
    --translation_input_file INPUT \
    --translation_output_file TRANSLATION \
    --translation_ref_file REFERENCE

Demos

See some example training and translation scripts, and a demo notebook.

Experiments

Multi30k English-German

  • Development: only de-BPE'd outputs
Model English-German German-English
Conditional 40.1 43.5
AEVNMT 40.9 43.4
  • Test: post-processed
Model English-German German-English
Conditional 38.0 40.9
AEVNMT 38.5 40.9

About

PyTorch implementation of Auto-Encoding Variational Neural Machine Translation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%