-
Notifications
You must be signed in to change notification settings - Fork 9
pre-commit: PRllvm/llvm-project/compare/main...fhahn:llvm-project:scev-guards-div-first #2921
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
…v-guards-div-first
Diff moderunner: ariselab-64c-docker 3 files changed, 665 insertions(+), 749 deletions(-) -4 duckdb/ub_duckdb_storage_compression.ll |
|
The patch modifies a loop in the
Overall, the transformation simplifies the loop by removing redundant maximum computation, tightening the control flow, and reducing the number of basic blocks and phi nodes. This likely results from improved loop optimization, such as better loop unswitching or dead code elimination, leading to more efficient and cleaner IR. model: qwen-plus-latest |
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus.
…#163021) At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus. PR: #163021
…oop guards. (#163021) At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus. PR: llvm/llvm-project#163021
…llvm#163021) At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus. PR: llvm#163021
…llvm#163021) At the moment, the effectivness of guards that contain divisibility information (A % B == 0 ) depends on the order of the conditions. This patch makes using divisibility information independent of the order, by collecting and applying the divisibility information separately. We first collect all conditions in a vector, then collect the divisibility information from all guards. When processing other guards, we apply divisibility info collected earlier. After all guards have been processed, we add the divisibility info, rewriting the existing rewrite. This ensures we apply the divisibility info to the largest rewrite expression. This helps to improve results in a few cases, one in dtcxzyw/llvm-opt-benchmark#2921 and another one in a different large C/C++ based IR corpus. PR: llvm#163021 (cherry picked from commit d3fe1df)
Link: llvm/llvm-project@main...fhahn:llvm-project:scev-guards-div-first
Requested by: @fhahn