Skip to content

dsqx71/KDD-CUP2017

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KDD Cup 2017

Project Organization

  • bnlstm: An implementation of Recurrent Batch Normalization in TensorFlow
  • config: Model config and dataset description
  • data.checkpoint: Tensorflow model files
  • data.dataSets: Rawdata, in csv format
  • data.features: Temporal data, in Pickle format
  • data.prediction: Prediction results
  • dataloader: Data iterator
  • feature: Functions concern feature preprocessing
  • model: Machine learning models
  • util: I/O and other utility functions

Requirements

  • Tensorflow 1.0
  • python 3.5

Get started

  • Download dataset, unpack and move them to data.dataSets directory
  • Check and edit all the fields related to dataset and experiment settings in config.py

References

  1. Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
  2. Cooijmans T, Ballas N, Laurent C, et al. Recurrent batch normalization[J]. arXiv preprint arXiv:1603.09025, 2016.
  3. Shahsavari B, Abbeel P. Short-term traffic forecasting: Modeling and learning spatio-temporal relations in transportation networks using graph neural networks[J]. 2015.
  4. Della Valle E, Celino I, Dell’Aglio D, et al. Urban Computing: a challenging problem for Semantic Technologies[C]//2nd International Workshop on New Forms of Reasoning for the Semantic Web (NEFORS 2008) co-located with the 3rd Asian Semantic Web Conference (ASWC 2008). 2008.
  5. Che Z, Purushotham S, Cho K, et al. Recurrent neural networks for multivariate time series with missing values[J]. arXiv preprint arXiv:1606.01865, 2016.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages