bnlstm
: An implementation of Recurrent Batch Normalization in TensorFlowconfig
: Model config and dataset descriptiondata.checkpoint
: Tensorflow model filesdata.dataSets
: Rawdata, in csv formatdata.features
: Temporal data, in Pickle formatdata.prediction
: Prediction resultsdataloader
: Data iteratorfeature
: Functions concern feature preprocessingmodel
: Machine learning modelsutil
: I/O and other utility functions
- Tensorflow 1.0
- python 3.5
- Download dataset, unpack and move them to
data.dataSets
directory - Check and edit all the fields related to dataset and experiment settings in
config.py
- Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
- Cooijmans T, Ballas N, Laurent C, et al. Recurrent batch normalization[J]. arXiv preprint arXiv:1603.09025, 2016.
- Shahsavari B, Abbeel P. Short-term traffic forecasting: Modeling and learning spatio-temporal relations in transportation networks using graph neural networks[J]. 2015.
- Della Valle E, Celino I, Dell’Aglio D, et al. Urban Computing: a challenging problem for Semantic Technologies[C]//2nd International Workshop on New Forms of Reasoning for the Semantic Web (NEFORS 2008) co-located with the 3rd Asian Semantic Web Conference (ASWC 2008). 2008.
- Che Z, Purushotham S, Cho K, et al. Recurrent neural networks for multivariate time series with missing values[J]. arXiv preprint arXiv:1606.01865, 2016.