GPU-accelerated molecular docking software: Uni-Dock 2
We have prepared an install script for simple installation.
It will create a new conda environment with Python 3.10
, CMake 3.31
and CUDA 11.8
, and compile the C++ engine automatically. Please make sure that there are C++/C compilers on your machine.
You can modify the environment name in the script as you like. Then perform the script:
chmod +x ./install.sh
./install.sh
- command line example:
unidock2 -r receptor.pdb -lb ligand_batch.dat --center 5.12 18.35 37.36 --configurations test.yaml
unidock2 -v
unidock2 -h
To use Uni-Dock 2 for python scripting, follow this example:
- Ensure you have the required input files: a PDB file and an SDF file.
- Define the target center and box size for docking.
- Call the UnidockProtocolRunner with the appropriate parameters.
from unidock.unidock_processing.unidocktools.unidock_protocol_runner import UnidockProtocolRunner
import sys
import os
if __name__ == "__main__":
assert(len(sys.argv) > 3)
fp_pdb = os.path.abspath(sys.argv[1])
fp_sdf = os.path.abspath(sys.argv[2])
yaml_file = os.path.abspath(sys.argv[3]) # input configuration
target_center = (5.12, 18.35, 37.36)
box_size = (30.0, 30.0, 30.0)
unidock_protocol_runner = UnidockProtocolRunner(fp_pdb,
[fp_sdf], # One sdf containing many ligands is allowed; Many sdf files are also allowed.
target_center=target_center,
option_yaml_file_name=yaml_file)
unidock_protocol_runner.run_unidock_protocol()
After execution, the output SDF file will contain all poses, scores, and other relevant data.
dp_data = 'align_input'
fp_sdf = [os.path.join(dp_data, "new.sdf")]
yaml_file = os.path.abspath("constraint.yaml") # input configuration
target_center = (18.974, 20.621, 15.106)
box_size = (30.0, 30.0, 30.0)
unidock_protocol_runner = UnidockProtocolRunner(fp_pdb,
fp_sdf,
target_center=target_center,
option_yaml_file_name=yaml_file)
unidock_protocol_runner.run_unidock_protocol()