Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion build/Dependencies.props
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@
<MicrosoftExtensionsTestPackageVersion>3.0.1</MicrosoftExtensionsTestPackageVersion>
<MicrosoftMLTestDatabasesPackageVersion>0.0.6-test</MicrosoftMLTestDatabasesPackageVersion>
<MicrosoftMLTestModelsPackageVersion>0.0.6-test</MicrosoftMLTestModelsPackageVersion>
<MicrosoftMLTensorFlowTestModelsVersion>0.0.11-test</MicrosoftMLTensorFlowTestModelsVersion>
<MicrosoftMLTensorFlowTestModelsVersion>0.0.12-test</MicrosoftMLTensorFlowTestModelsVersion>
<MicrosoftMLOnnxTestModelsVersion>0.0.6-test</MicrosoftMLOnnxTestModelsVersion>
<SystemDataSqlClientVersion>4.6.1</SystemDataSqlClientVersion>
<XunitCombinatorialVersion>1.2.7</XunitCombinatorialVersion>
Expand Down
14 changes: 12 additions & 2 deletions src/Microsoft.ML.TensorFlow/TensorflowTransform.cs
Original file line number Diff line number Diff line change
Expand Up @@ -529,6 +529,18 @@ public Mapper(TensorFlowTransformer parent, DataViewSchema inputSchema) :
if (typeValueCount % valCount != 0)
throw Contracts.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {originalShape.ToString()}, but input data is of length {typeValueCount}.");

// This cover the 2-variable senario e.g. [?, ?, ?, C] where we can assume typeDims provides the information of [W, H, C]
// The shape will become [?, W, H, C]
var originalShapeDims = originalShape.dims;
var originalShapeNdim = originalShape.ndim;
if (numOfUnkDim == 3 && colTypeDims.Length == 3 && originalShapeNdim == numOfUnkDim + 1 && originalShapeDims[1] == -1)
{
originalShapeDims[1] = colTypeDims[0];
originalShapeDims[2] = colTypeDims[1];
valCount *= originalShapeDims[1] * originalShapeDims[2];
numOfUnkDim -= 2;
}

// If the shape is multi-dimensional, we should be able to create the length of the vector by plugging
// in a single value for the unknown shapes. For example, if the shape is [?,?,3], then there should exist a value
// d such that d*d*3 is equal to the length of the input column.
Expand All @@ -537,8 +549,6 @@ public Mapper(TensorFlowTransformer parent, DataViewSchema inputSchema) :
throw Contracts.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {originalShape.ToString()}, but input data is of length {typeValueCount}.");

// Fill in the unknown dimensions.
var originalShapeNdim = originalShape.ndim;
var originalShapeDims = originalShape.dims;
var l = new int[originalShapeNdim];
for (int ishape = 0; ishape < originalShapeNdim; ishape++)
l[ishape] = originalShapeDims[ishape] == -1 ? (int)d : originalShapeDims[ishape];
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1900,5 +1900,40 @@ private static string GetTemporaryDirectory()
Directory.CreateDirectory(tempDirectory);
return tempDirectory;
}

[TensorFlowFact]
public void TensorflowPlaceholderShapeInferenceTest()
{
//frozen_model_variadic_input_shape.pb is modified by frozen_model.pb
//the shape of placeholder is changed from [?, w, h, c] to [?, ?, ?, c]
string modelLocation = "cifar_model/frozen_model_variadic_input_shape.pb";

int imageHeight = 32;
int imageWidth = 32;
string dataFile = GetDataPath("images/images.tsv");
string imageFolder = Path.GetDirectoryName(dataFile);

IDataView data = _mlContext.Data.LoadFromTextFile(dataFile, new[] {
new TextLoader.Column("imagePath", DataKind.String, 0),
new TextLoader.Column("name", DataKind.String, 1)
});

Tensorflow.TensorShape[] tfInputShape;

using (var tfModel = _mlContext.Model.LoadTensorFlowModel(modelLocation))
{
var pipeline = _mlContext.Transforms.LoadImages("Input", imageFolder, "imagePath")
.Append(_mlContext.Transforms.ResizeImages("Input", imageHeight, imageWidth))
.Append(_mlContext.Transforms.ExtractPixels("Input", interleavePixelColors: true))
.Append(tfModel.ScoreTensorFlowModel("Output", "Input"));

var transformer = pipeline.Fit(data);

tfInputShape = transformer.LastTransformer.TFInputShapes;
}

Assert.Equal(imageHeight, tfInputShape.ElementAt(0)[1].dims[0]);
Assert.Equal(imageWidth, tfInputShape.ElementAt(0)[2].dims[0]);
}
}
}