Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/Microsoft.ML.Vision/ImageClassificationTrainer.cs
Original file line number Diff line number Diff line change
Expand Up @@ -937,7 +937,7 @@ private void TrainAndEvaluateClassificationLayer(string trainBottleneckFilePath,
metrics.Train.LearningRate = learningRate;
// Update train state.
trainstate.CurrentEpoch = epoch;
using (var cursor = trainingSet.GetRowCursor(trainingSet.Schema.ToArray(), new Random()))
using (var cursor = trainingSet.GetRowCursor(trainingSet.Schema.ToArray()))
{
var labelGetter = cursor.GetGetter<long>(trainingSet.Schema[0]);
var featuresGetter = cursor.GetGetter<VBuffer<float>>(featureColumn);
Expand Down Expand Up @@ -1069,7 +1069,7 @@ private void TrainAndEvaluateClassificationLayer(string trainBottleneckFilePath,
metrics.Train.BatchProcessedCount = 0;
metrics.Train.Accuracy = 0;
metrics.Train.CrossEntropy = 0;
using (var cursor = validationSet.GetRowCursor(validationSet.Schema.ToArray(), new Random()))
using (var cursor = validationSet.GetRowCursor(validationSet.Schema.ToArray()))
{
var labelGetter = cursor.GetGetter<long>(validationSet.Schema[0]);
var featuresGetter = cursor.GetGetter<VBuffer<float>>(featureColumn);
Expand Down
2 changes: 1 addition & 1 deletion test/Microsoft.ML.AutoML.Tests/AutoFitTests.cs
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ public void AutoFitMultiTest()
[TensorFlowFact]
public void AutoFitImageClassificationTrainTest()
{
var context = new MLContext();
var context = new MLContext(seed: 1);
var datasetPath = DatasetUtil.GetFlowersDataset();
var columnInference = context.Auto().InferColumns(datasetPath, "Label");
var textLoader = context.Data.CreateTextLoader(columnInference.TextLoaderOptions);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1274,8 +1274,8 @@ public void TensorFlowImageClassificationDefault()
if (!(RuntimeInformation.IsOSPlatform(OSPlatform.Windows) ||
(RuntimeInformation.IsOSPlatform(OSPlatform.OSX))))
{
Assert.InRange(metrics.MicroAccuracy, 0.3, 1);
Assert.InRange(metrics.MacroAccuracy, 0.3, 1);
Assert.InRange(metrics.MicroAccuracy, 0.2, 1);
Assert.InRange(metrics.MacroAccuracy, 0.2, 1);
}
else
{
Expand Down Expand Up @@ -1370,8 +1370,8 @@ public void TensorFlowImageClassification(ImageClassificationTrainer.Architectur
if (!(RuntimeInformation.IsOSPlatform(OSPlatform.Windows) ||
(RuntimeInformation.IsOSPlatform(OSPlatform.OSX))))
{
Assert.InRange(metrics.MicroAccuracy, 0.3, 1);
Assert.InRange(metrics.MacroAccuracy, 0.3, 1);
Assert.InRange(metrics.MicroAccuracy, 0.2, 1);
Assert.InRange(metrics.MacroAccuracy, 0.2, 1);
}
else
{
Expand Down Expand Up @@ -1429,16 +1429,23 @@ public void TensorFlowImageClassification(ImageClassificationTrainer.Architectur
[TensorFlowFact]
public void TensorFlowImageClassificationWithExponentialLRScheduling()
{
TensorFlowImageClassificationWithLRScheduling(new ExponentialLRDecay());
TensorFlowImageClassificationWithLRScheduling(new ExponentialLRDecay(), 50);
}

[Fact(Skip ="Very unstable tests, causing many build failures.")]
[TensorFlowFact]
public void TensorFlowImageClassificationWithPolynomialLRScheduling()
{
TensorFlowImageClassificationWithLRScheduling(new PolynomialLRDecay());

/*
* Due to an issue with Nix based os performance is not as good,
* as such increase the number of epochs to produce a better model.
*/
bool isNix = (!(RuntimeInformation.IsOSPlatform(OSPlatform.Windows) ||
(RuntimeInformation.IsOSPlatform(OSPlatform.OSX))));
TensorFlowImageClassificationWithLRScheduling(new PolynomialLRDecay(), isNix ? 75: 50);
}

internal void TensorFlowImageClassificationWithLRScheduling(LearningRateScheduler learningRateScheduler)
internal void TensorFlowImageClassificationWithLRScheduling(LearningRateScheduler learningRateScheduler, int epoch)
{
string assetsRelativePath = @"assets";
string assetsPath = GetAbsolutePath(assetsRelativePath);
Expand Down Expand Up @@ -1484,17 +1491,14 @@ internal void TensorFlowImageClassificationWithLRScheduling(LearningRateSchedule
// ResnetV2101 you can try a different architecture/
// pre-trained model.
Arch = ImageClassificationTrainer.Architecture.ResnetV2101,
Epoch = 50,
Epoch = epoch,
BatchSize = 10,
LearningRate = 0.01f,
MetricsCallback = (metric) => Console.WriteLine(metric),
ValidationSet = validationSet,
ReuseValidationSetBottleneckCachedValues = false,
ReuseTrainSetBottleneckCachedValues = false,
EarlyStoppingCriteria = null,
// Using Exponential Decay for learning rate scheduling
// You can also try other types of Learning rate scheduling methods
// available in LearningRateScheduler.cs
LearningRateScheduler = learningRateScheduler,
WorkspacePath = GetTemporaryDirectory()
};
Expand Down Expand Up @@ -1526,8 +1530,8 @@ internal void TensorFlowImageClassificationWithLRScheduling(LearningRateSchedule
if (!(RuntimeInformation.IsOSPlatform(OSPlatform.Windows) ||
(RuntimeInformation.IsOSPlatform(OSPlatform.OSX))))
{
Assert.InRange(metrics.MicroAccuracy, 0.3, 1);
Assert.InRange(metrics.MacroAccuracy, 0.3, 1);
Assert.InRange(metrics.MicroAccuracy, 0.2, 1);
Assert.InRange(metrics.MacroAccuracy, 0.2, 1);
}
else
{
Expand Down Expand Up @@ -1669,8 +1673,8 @@ public void TensorFlowImageClassificationEarlyStoppingIncreasing()
if (!(RuntimeInformation.IsOSPlatform(OSPlatform.Windows) ||
(RuntimeInformation.IsOSPlatform(OSPlatform.OSX))))
{
Assert.InRange(metrics.MicroAccuracy, 0.3, 1);
Assert.InRange(metrics.MacroAccuracy, 0.3, 1);
Assert.InRange(metrics.MicroAccuracy, 0.2, 1);
Assert.InRange(metrics.MacroAccuracy, 0.2, 1);
}
else
{
Expand Down Expand Up @@ -1763,8 +1767,8 @@ public void TensorFlowImageClassificationEarlyStoppingDecreasing()
if (!(RuntimeInformation.IsOSPlatform(OSPlatform.Windows) ||
(RuntimeInformation.IsOSPlatform(OSPlatform.OSX))))
{
Assert.InRange(metrics.MicroAccuracy, 0.3, 1);
Assert.InRange(metrics.MacroAccuracy, 0.3, 1);
Assert.InRange(metrics.MicroAccuracy, 0.2, 1);
Assert.InRange(metrics.MacroAccuracy, 0.2, 1);
}
else
{
Expand Down