Please cite our paper:
@inproceedings{sgfm,
title={Guided Diffusion from Self-Supervised Diffusion Features},
author={Vincent Tao Hu and Yunlu Chen and Mathilde Caron and Yuki M Asano and Cees G. M. Snoek and Björn Ommer},
year={2024},
booktitle={Arxiv},
}
}
ImageNet100, Image-level
CUDA_VISIBLE_DEVICES=2 accelerate launch --num_processes 1 --main_process_port 8050 --mixed_precision fp16 train_sgfm_hydra.py nnet=uvit_online train.batch_size=64 train.n_steps=400_000 train.log_interval=10 train.vis_interval=5_000 train.save_interval=40_000 is_debug=0 tag=_
ImageNet100, Patch-level
CUDA_VISIBLE_DEVICES=2 accelerate launch --num_processes 1 --main_process_port 8050 --mixed_precision fp16 train_sgfm_hydra.py nnet=uvit_online_patch train.batch_size=64 train.n_steps=400_000 train.log_interval=10 train.vis_interval=5_000 train.save_interval=40_000 is_debug=0 tag=_
mkdir assets && cd assets
prepare assets/fid_stats/
assets/stable-diffusion/
assets/pretrained_weights/
assets/datasets/imagenet256_features.tar.gz
python scripts/extract_imagenet_feature.py ~/data/imagenet
download lsun-churches, git clone lsun repo
python3 download.py -c church_outdoor
and unzip them,unzip church_outdoor_train_lmdb.zip
python data.py export church_outdoor_train_lmdb --out_dir churches_flat_train --flat
we use python==3.10 and torch==2.0
conda create -n sgfm python=3.10
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install pytorch-lightning torchdiffeq matplotlib h5py timm diffusers accelerate loguru blobfile ml_collections
pip install hydra-core wandb einops scikit-learn --upgrade
pip install einops scikit-learn webdataset
pip install transformers==4.23.1 pycocotools # for text-to-image task
pip install ml_collections einops h5py
pip install accelerate==0.23.0
pip install git+https://github.com/dongzhuoyao/pytorch-fid-with-sfid
pip install torch_fidelity clean_fid fire
pip install python-dotenv #for configuring the wandb key
faiss install
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia