Skip to content

[CIKM 2022 Short] Models and Benchmarks for Representation Learning of Partially Observed Subgraphs

Notifications You must be signed in to change notification settings

dongkwan-kim/PSI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PSI

Official Implementation of 'Partial Subgraph InfoMax (PSI)' from 'Models and Benchmarks for Representation Learning of Partially Observed Subgraphs', 31st ACM International Conference on Information and Knowledge Management (CIKM 2022, Short Papers Track).

BibTeX

TBA

Installation

bash PSI/install.sh ${CUDA, optional, default is cu102.}
  • If you have any trouble installing PyTorch Geometric, please install PyG's dependencies manually.
  • Codes are tested with python 3.7.9 and nvidia/cuda:10.2-cudnn8-devel-ubuntu18.04 image.
  • PYG's FAQ might be helpful.

Basics

  • The main train/test code is in PSI/main.py.
  • If you want to see hyperparameter settings, refer to PSI/args.yaml and PSI/arguments.py.

Run

python -u PSI/main.py \
    --dataset-name FNTN \
    --custom-key BIE2D2F64-ISI-X-GB-PGA \
    --gpu-ids 0 \
    --dataset-path /mnt/nas2/GNN-DATA/

GPU Setting

There are three arguments for GPU settings (--num-gpus-total, --num-gpus-to-use, --gpu-ids). Default values are from the author's machine, so we recommend you modify these values from PSI/args.yaml or by the command line.

  • --num-gpus-total (default 4): The total number of GPUs in your machine.
  • --num-gpus-to-use (default 1): The number of GPUs you want to use.
  • --gpu-ids (default: [0]): The ids of GPUs you want to use.

Datasets

Names (--dataset-name)

Dataset --dataset-name
FNTN FNTN
EM-User EMUser
HPO-Metab HPOMetab

Path (--dataset-path)

Download datasets and put them into the specific path (--dataset-path).

root@5b592ce:~$ ls /mnt/nas2/GNN-DATA/
EMUSER  FNTN  HPOMETAB

Models (--custom-key)

Type FNTN EMUser & HPOMetab
PS-DGI BISAGE-SHORT-DGI-X-GB-PGA SAGE-SHORT-DGI-X-GB
PS-InfoGraph BISAGE-SHORT-ISI-X-GB-PGA SAGE-SHORT-ISI-X-GB
PS-MVGRL BISAGE-SHORT-MVGRL-X-GB-PGA SAGE-SHORT-MVGRL-X-GB
PS-GraphCL BISAGE-SHORT-GRAPHCL3-X-GB-PGA SAGE-SHORT-GRAPHCL3FB-X-GB (only for HPOMetab)
k-hop PSI BIE2D2F64-X-PGA E2D2F64-X
k-hop PSI + PS-DGI BIE2D2F64-DGI-X-GB-PGA E2D2F64-DGI-X-GB
k-hop PSI + PS-InfoGraph BIE2D2F64-ISI-X-GB-PGA E2D2F64-ISI-X-GB

Other Hyperparameters

See PSI/args.yaml or run $ python PSI/main.py --help.

About

[CIKM 2022 Short] Models and Benchmarks for Representation Learning of Partially Observed Subgraphs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published