nolearn contains a number of wrappers and abstractions around existing neural network libraries, most notably Lasagne, along with a few machine learning utility modules. All code is written to be compatible with scikit-learn.
Note
nolearn is currently unmaintained. However, if you follow the installation instructions, you should still be able to get it to work (namely with library versions that are outdated at this point).
If you're looking for an alternative to nolearn.lasagne, a library that integrates neural networks with scikit-learn, then take a look at skorch, which wraps PyTorch for scikit-learn.
We recommend using venv (when using Python 3) or virtualenv (Python 2) to install nolearn.
nolearn comes with a list of known good versions of dependencies that
we test with in requirements.txt
. To install the latest version
of nolearn from Git along with these known good dependencies, run
these two commands:
pip install -r https://raw.githubusercontent.com/dnouri/nolearn/master/requirements.txt pip install git+https://github.com/dnouri/nolearn.git
If you're looking for how to use nolearn.lasagne, then there's two introductory tutorials that you can choose from:
- Using convolutional neural nets to detect facial keypoints tutorial with code
- Training convolutional neural networks with nolearn
For specifics around classes and functions out of the lasagne package, such as layers, updates, and nonlinearities, you'll want to look at the Lasagne project's documentation.
nolearn.lasagne comes with a number of tests that demonstrate some of the more advanced features, such as networks with merge layers, and networks with multiple inputs.
nolearn's own documentation is somewhat out of date at this point. But there's more resources online.
Finally, there's a few presentations and examples from around the web. Note that some of these might need a specific version of nolearn and Lasange to run:
- Oliver Dürr's Convolutional Neural Nets II Hands On with code
- Roelof Pieters' presentation Python for Image Understanding comes with nolearn.lasagne code examples
- Benjamin Bossan's Otto Group Product Classification Challenge using nolearn/lasagne
- Kaggle's instructions on how to set up an AWS GPU instance to run nolearn.lasagne and the facial keypoint detection tutorial
- An example convolutional autoencoder
- Winners of the saliency prediction task in the 2015 LSUN Challenge have published their lasagne/nolearn-based code.
- The winners of the 2nd place in the Kaggle Diabetic Retinopathy Detection challenge have published their lasagne/nolearn-based code.
- The winner of the 2nd place in the Kaggle Right Whale Recognition challenge has published his lasagne/nolearn-based code.
If you're seeing a bug with nolearn, please submit a bug report to the nolearn issue tracker. Make sure to include information such as:
- how to reproduce the error: show us how to trigger the bug using a minimal example
- what versions you are using: include the Git revision and/or version of nolearn (and possibly Lasagne) that you're using
Please also make sure to search the issue tracker to see if your issue has been encountered before or fixed.
If you believe that you're seeing an issue with Lasagne, which is a different software project, please use the Lasagne issue tracker instead.
There's currently no user mailing list for nolearn. However, if you have a question related to Lasagne, you might want to try the Lasagne users list, or use Stack Overflow. Please refrain from contacting the authors for non-commercial support requests directly; public forums are the right place for these.
Citations are welcome:
Daniel Nouri. 2014. nolearn: scikit-learn compatible neural network library https://github.com/dnouri/nolearn
See the LICENSE.txt file for license rights and limitations (MIT).