Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix cli model IO. #5535

Merged
merged 3 commits into from
Apr 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Jenkinsfile
Original file line number Diff line number Diff line change
Expand Up @@ -201,6 +201,7 @@ def BuildCPU() {
${docker_extra_params} ${dockerRun} ${container_type} ${docker_binary} build/testxgboost
"""

stash name: 'xgboost_cli', includes: 'xgboost'
deleteDir()
}
}
Expand Down Expand Up @@ -282,6 +283,7 @@ def TestPythonCPU() {
node('linux && cpu') {
unstash name: 'xgboost_whl_cuda9'
unstash name: 'srcs'
unstash name: 'xgboost_cli'
echo "Test Python CPU"
def container_type = "cpu"
def docker_binary = "docker"
Expand Down
2 changes: 2 additions & 0 deletions Jenkinsfile-win64
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@ def BuildWin64() {
s3Upload bucket: 'xgboost-nightly-builds', path: path, acl: 'PublicRead', workingDir: 'python-package/dist', includePathPattern:'**/*.whl'
echo 'Stashing C++ test executable (testxgboost)...'
stash name: 'xgboost_cpp_tests', includes: 'build/testxgboost.exe'
stash name: 'xgboost_cli', includes: 'xgboost.exe'
deleteDir()
}
}
Expand All @@ -104,6 +105,7 @@ def TestWin64CPU() {
node('win64 && cpu') {
unstash name: 'srcs'
unstash name: 'xgboost_whl'
unstash name: 'xgboost_cli'
echo "Test Win64 CPU"
echo "Installing Python wheel..."
bat "conda activate && (python -m pip uninstall -y xgboost || cd .)"
Expand Down
14 changes: 5 additions & 9 deletions src/cli_main.cc
Original file line number Diff line number Diff line change
Expand Up @@ -138,14 +138,10 @@ struct CLIParam : public XGBoostParameter<CLIParam> {
// constraint.
if (name_pred == "stdout") {
save_period = 0;
this->cfg.emplace_back(std::make_pair("silent", "0"));
}
if (dsplit == 0 && rabit::IsDistributed()) {
dsplit = 2;
}
if (rabit::GetRank() != 0) {
this->cfg.emplace_back(std::make_pair("silent", "1"));
}
}
};

Expand Down Expand Up @@ -189,7 +185,7 @@ void CLITrain(const CLIParam& param) {
if (param.model_in != "NULL") {
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Load(fi.get());
learner->LoadModel(fi.get());
learner->SetParams(param.cfg);
} else {
learner->SetParams(param.cfg);
Expand Down Expand Up @@ -229,7 +225,7 @@ void CLITrain(const CLIParam& param) {
<< i + 1 << ".model";
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(os.str().c_str(), "w"));
learner->Save(fo.get());
learner->SaveModel(fo.get());
}

if (learner->AllowLazyCheckPoint()) {
Expand All @@ -255,7 +251,7 @@ void CLITrain(const CLIParam& param) {
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(os.str().c_str(), "w"));
learner->Save(fo.get());
learner->SaveModel(fo.get());
}

double elapsed = dmlc::GetTime() - start;
Expand All @@ -277,7 +273,7 @@ void CLIDumpModel(const CLIParam& param) {
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->SetParams(param.cfg);
learner->Load(fi.get());
learner->LoadModel(fi.get());
// dump data
std::vector<std::string> dump = learner->DumpModel(
fmap, param.dump_stats, param.dump_format);
Expand Down Expand Up @@ -316,7 +312,7 @@ void CLIPredict(const CLIParam& param) {
std::unique_ptr<Learner> learner(Learner::Create({}));
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Load(fi.get());
learner->LoadModel(fi.get());
learner->SetParams(param.cfg);

LOG(INFO) << "start prediction...";
Expand Down
91 changes: 91 additions & 0 deletions tests/python/test_cli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import os
import tempfile
import unittest
import platform
import xgboost
import subprocess
import numpy


class TestCLI(unittest.TestCase):
template = '''
booster = gbtree
objective = reg:squarederror
eta = 1.0
gamma = 1.0
seed = 0
min_child_weight = 0
max_depth = 3
task = {task}
model_in = {model_in}
model_out = {model_out}
test_path = {test_path}
name_pred = {name_pred}

num_round = 10
data = {data_path}
eval[test] = {data_path}
'''

def test_cli_model(self):
curdir = os.path.normpath(os.path.abspath(os.path.dirname(__file__)))
project_root = os.path.normpath(
os.path.join(curdir, os.path.pardir, os.path.pardir))
data_path = "{root}/demo/data/agaricus.txt.train?format=libsvm".format(
root=project_root)

if platform.system() == 'Windows':
exe = 'xgboost.exe'
else:
exe = 'xgboost'
exe = os.path.join(project_root, exe)
assert os.path.exists(exe)

with tempfile.TemporaryDirectory() as tmpdir:
model_out = os.path.join(tmpdir, 'test_load_cli_model')
config_path = os.path.join(tmpdir, 'test_load_cli_model.conf')

train_conf = self.template.format(data_path=data_path,
task='train',
model_in='NULL',
model_out=model_out,
test_path='NULL',
name_pred='NULL')
with open(config_path, 'w') as fd:
fd.write(train_conf)

subprocess.run([exe, config_path])

predict_out = os.path.join(tmpdir,
'test_load_cli_model-prediction')
predict_conf = self.template.format(task='pred',
data_path=data_path,
model_in=model_out,
model_out='NULL',
test_path=data_path,
name_pred=predict_out)
with open(config_path, 'w') as fd:
fd.write(predict_conf)

subprocess.run([exe, config_path])

cli_predt = numpy.loadtxt(predict_out)

parameters = {
'booster': 'gbtree',
'objective': 'reg:squarederror',
'eta': 1.0,
'gamma': 1.0,
'seed': 0,
'min_child_weight': 0,
'max_depth': 3
}
data = xgboost.DMatrix(data_path)
booster = xgboost.train(parameters, data, num_boost_round=10)
py_predt = booster.predict(data)

numpy.testing.assert_allclose(cli_predt, py_predt)

cli_model = xgboost.Booster(model_file=model_out)
cli_predt = cli_model.predict(data)
numpy.testing.assert_allclose(cli_predt, py_predt)