The sourmash lca
sub-commands do k-mer classification using an
"lowest common ancestor" approach. See "Some discussion" below for
links and details.
This tutorial should run without modification on Linux or Mac OS X, under Miniconda.
You'll need about 5 GB of free disk space to download the database, and about 5 GB of RAM to search it. The tutorial should take about 20 minutes total to run.
If you don't have the conda
command installed, you'll need to install
miniconda for Python 3.x.
On Linux, this should work:
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b
echo export PATH="$HOME/miniconda3/bin:$PATH" >> ~/.bash_profile
source ~/.bash_profile
otherwise, follow the miniconda install.
Enable bioconda
conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
To install sourmash, create a new environment named smash
and install sourmash:
conda create -y -n smash sourmash
and then activate:
conda activate smash
You should now be able to use the sourmash
command:
sourmash info
Next, download a genbank LCA database for k=31:
curl -L -o genbank-k31.lca.json.gz https://osf.io/4f8n3/download
Download a random genome from genbank:
curl -L -o some-genome.fa.gz ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/178/875/GCF_000178875.2_ASM17887v2/GCF_000178875.2_ASM17887v2_genomic.fna.gz
Compute a signature for this genome:
sourmash compute -k 31 --scaled=1000 --name-from-first some-genome.fa.gz
Now, classify the signature with sourmash lca classify
,
sourmash lca classify --db genbank-k31.lca.json.gz \
--query some-genome.fa.gz.sig
and this will give you a taxonomic identification of your genome bin, classified using all of the genbank microbial genomes:
loaded 1 LCA databases. ksize=31, scaled=10000
finding query signatures...
outputting classifications to stdout
ID,status,superkingdom,phylum,class,order,family,genus,species,strain
... classifying NC_016901.1 Shewanella baltica OS678, complete genome (file 1 of"NC_016901.1 Shewanella baltica OS678, complete genome",found,Bacteria,Proteobacteria,Gammaproteobacteria,Alteromonadales,Shewanellaceae,Shewanella,Shewanella baltica,
classified 1 signatures total
You can also summarize the taxonomic distribution of the content with
lca summarize
:
sourmash lca summarize --db genbank-k31.lca.json.gz \
--query some-genome.fa.gz.sig
which will show you:
loaded 1 LCA databases. ksize=31, scaled=10000
finding query signatures...
loaded 1 signatures from 1 files total.
97.9% 520 Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Shewanellaceae;Shewanella
97.9% 520 Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Shewanellaceae
97.9% 520 Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales
99.6% 529 Bacteria;Proteobacteria;Gammaproteobacteria
99.6% 529 Bacteria;Proteobacteria
99.6% 529 Bacteria
45.4% 241 Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Shewanellaceae;Shewanella;Shewanella baltica
To apply this to your own genome(s), replace some-genome.fa.gz
above
with your own filename(s).
You can also specify multiple databases and multiple query signatures
on the command line; separate them with --db
or --query
.
(This is an abbreviated version of this blog post, updated to use the sourmash lca
commands.)
Download some pre-computed signatures:
curl -L https://osf.io/bw8d7/download?version=1 -o delmont-subsample-sigs.tar.gz
tar xzf delmont-subsample-sigs.tar.gz
Next, grab the associated taxonomy spreadsheet
curl -O -L https://github.com/ctb/2017-sourmash-lca/raw/master/tara-delmont-SuppTable3.csv
Build a sourmash LCA database named delmont.lca.json
:
sourmash lca index -f tara-delmont-SuppTable3.csv delmont.lca.json delmont-subsample-sigs/*.sig
We can now use delmont.lca.json
to classify signatures with k-mers
according to the database we just created. (Note, the database is
completely self-contained at this point.)
Let's classify a single signature:
sourmash lca classify --db delmont.lca.json \
--query delmont-subsample-sigs/TARA_RED_MAG_00003.fa.gz.sig
and you should see:
loaded 1 databases for LCA use.
ksize=31 scaled=10000
outputting classifications to stdout
ID,status,superkingdom,phylum,class,order,family,genus,species
TARA_RED_MAG_00003,found,Bacteria,Proteobacteria,Gammaproteobacteria,,,,
classified 1 signatures total
You can classify a bunch of signatures and also specify an output location for the CSV:
sourmash lca classify --db delmont.lca.json \
--query delmont-subsample-sigs/*.sig \
-o out.csv
The lca classify
command supports multiple databases as well as
multiple queries; e.g. sourmash lca classify --db delmont.lca.json other.lca.json
will classify based on the combination of taxonomies
in the two databases.
Sourmash LCA is using k-mers to do taxonomic classification, using the
"lowest common ancestor" approach (pioneered by
Kraken, and described
here),
to identify each k-mer. From this it can either find a consensus
taxonomy between all the k-mers (sourmash classify
) or it can summarize
the mixture of k-mers present in one or more signatures (sourmash summarize
).
The sourmash lca index
command can be used to prepare custom taxonomy
databases; sourmash will happily ingest any taxonomy, whether or not
it matches NCBI. See
the spreadsheet from Delmont et al., 2017
for an example format.