Skip to content

Latest commit

 

History

History
54 lines (46 loc) · 1.33 KB

acrm-equations.md

File metadata and controls

54 lines (46 loc) · 1.33 KB

AcroMonk

Equation of Motion

The general formulation for equation of motion is shown in the following:

$$\begin{equation*} \mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}} +\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{\tau}_g (\mathbf{q}) + \mathbf{B} u \end{equation*}$$

The mass-inertia matrix $\mathbf{M}$ for AcroMonk is

$$\begin{equation*} \mathbf{M}(\mathbf{q}) = \begin{bmatrix} I_1 + I_2 + m_2 l_1^2 + 2m_2 l_1 l_{c2} c_2 & I_2 + m_2 l_1 l_{c2} c_2 \\ I_2 + m_2 l_1 l_{c2} c_2 & I_2 \end{bmatrix} \end{equation*}$$

with the shorthand notation $s_1 = \sin(q_1), c_1 = \cos(q_1)$. Accordingly, Coriolis matrix is:

$$\begin{equation*} \mathbf{C}(\mathbf{q},\dot{\mathbf{q}}) = \begin{bmatrix} -2 m_2 l_1 l_{c2} s_2 \dot{q}_2 & -m_2 l_1 l_{c2} s_2 \dot{q}_2 \\ m_2 l_1 l_{c2} s_2 \dot{q}_1 & 0 \end{bmatrix} \end{equation*}$$

with the gravity vector as:

$$\begin{equation*} \mathbf{\tau}_g(\mathbf{q}) = \begin{bmatrix} -m_1 g l_{c1}s_1 - m_2 g (l_1 s_1 + l_{c2}s_{1+2}) \\ -m_2 g l_{c2} s_{1+2} \end{bmatrix} \end{equation*}$$

and the actuation matrix is $\mathbf{B} = [0 \quad 1]^T$, which captures the underactuation of the system.