Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

compiler: prevent temporary for local reductions #2218

Merged
merged 2 commits into from
Sep 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion devito/builtins/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def __init__(self, *functions, op=dv.mpi.MPI.SUM, dtype=None):
self.op = op

def __enter__(self):
i = dv.Dimension(name='i',)
i = dv.Dimension(name='mri',)
self.n = dv.Function(name='n', shape=(1,), dimensions=(i,),
grid=self.grid, dtype=self.dtype)
self.n.data[0] = 0
Expand Down
51 changes: 32 additions & 19 deletions devito/ir/clusters/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

from devito.exceptions import InvalidOperator
from devito.ir.support import (Any, Backward, Forward, IterationSpace,
PARALLEL_IF_ATOMIC, pull_dims)
pull_dims)
from devito.ir.clusters.analysis import analyze
from devito.ir.clusters.cluster import Cluster, ClusterGroup
from devito.ir.clusters.visitors import Queue, QueueStateful, cluster_pass
Expand Down Expand Up @@ -402,7 +402,8 @@ def normalize(clusters, **kwargs):
sregistry = kwargs['sregistry']

clusters = normalize_nested_indexeds(clusters, sregistry)
clusters = normalize_reductions(clusters, sregistry, options)
clusters = normalize_reductions_dense(clusters, sregistry, options)
clusters = normalize_reductions_sparse(clusters, sregistry, options)

return clusters

Expand Down Expand Up @@ -444,34 +445,22 @@ def pull_indexeds(expr, subs, mapper, parent=None):
return cluster.rebuild(processed)


@cluster_pass(mode='all')
def normalize_reductions(cluster, sregistry, options):
@cluster_pass(mode='dense')
def normalize_reductions_dense(cluster, sregistry, options):
"""
Extract the right-hand sides of reduction Eq's in to temporaries.
"""
opt_mapify_reduce = options['mapify-reduce']

dims = [d for d, v in cluster.properties.items() if PARALLEL_IF_ATOMIC in v]
dims = [d for d in cluster.properties.dimensions
if cluster.properties.is_parallel_atomic(d)]

if not dims:
return cluster

processed = []
for e in cluster.exprs:
if e.is_Reduction and (e.lhs.is_Indexed or cluster.is_sparse):
# Transform `e` such that we reduce into a scalar (ultimately via
# atomic ops, though this part is carried out by a much later pass)
# For example, given `i = m[p_src]` (i.e., indirection array), turn:
# `u[t, i] += f(u[t, i], src, ...)`
# into
# `s = f(u[t, i], src, ...)`
# `u[t, i] += s`
name = sregistry.make_name()
v = Symbol(name=name, dtype=e.dtype)
processed.extend([e.func(v, e.rhs, operation=None),
e.func(e.lhs, v)])

elif e.is_Reduction and e.lhs.is_Symbol and opt_mapify_reduce:
if e.is_Reduction and e.lhs.is_Symbol and opt_mapify_reduce:
# Transform `e` into what is in essence an explicit map-reduce
# For example, turn:
# `s += f(u[x], v[x], ...)`
Expand All @@ -484,7 +473,31 @@ def normalize_reductions(cluster, sregistry, options):
a = Array(name=name, dtype=e.dtype, dimensions=dims)
processed.extend([Eq(a.indexify(), e.rhs),
e.func(e.lhs, a.indexify())])
else:
processed.append(e)

return cluster.rebuild(processed)


@cluster_pass(mode='sparse')
def normalize_reductions_sparse(cluster, sregistry, options):
"""
Extract the right-hand sides of reduction Eq's in to temporaries.
"""
processed = []
for e in cluster.exprs:
if e.is_Reduction and e.lhs.is_Indexed:
# Transform `e` such that we reduce into a scalar (ultimately via
# atomic ops, though this part is carried out by a much later pass)
# For example, given `i = m[p_src]` (i.e., indirection array), turn:
# `u[t, i] += f(u[t, i], src, ...)`
# into
# `s = f(u[t, i], src, ...)`
# `u[t, i] += s`
name = sregistry.make_name()
v = Symbol(name=name, dtype=e.dtype)
processed.extend([e.func(v, e.rhs, operation=None),
e.func(e.lhs, v)])
else:
processed.append(e)

Expand Down
15 changes: 13 additions & 2 deletions devito/ir/clusters/cluster.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,9 +228,20 @@ def is_dense(self):
not self.is_halo_touch and
all(a.is_regular for a in self.scope.accesses))

@property
@cached_property
def is_sparse(self):
return not self.is_dense
"""
A cluster is sparse if it represent a sparse operation i.e if both

* The cluster contains sparse functions
* The cluster uses dense functions

If only the first case is true, the cluster only contains operation on the sparse
function itself without indirection and therefore only contains dense operations.
"""
return (any(f.is_SparseFunction for f in self.functions) and
len([f for f in self.functions
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what if an Array?

perhaps a bit safer:

return all(split(self.functions, lambda f: f.is_SparseFunction))

?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not sure that's enough, that doesn't check if there actually is a sparse function I'll see if can simplify

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes it should do it through the all(...)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes but the other part may be wrong because there i a bunch of Dimension, ... left in the other part of split so you might get a "false Truewith something like[time, rec[time, p_rec], p_rec]inself.function`

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah OK

if (f.is_Function and not f.is_SparseFunction)]) > 0)

@property
def is_halo_touch(self):
Expand Down
8 changes: 8 additions & 0 deletions devito/ir/equations/equation.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,14 @@ def apply(self, func):
kwargs['conditionals'] = {k: func(v) for k, v in self.conditionals.items()}
return self.func(*args, **kwargs)

def __repr__(self):
if not self.is_Reduction:
return super().__repr__()
elif self.operation is OpInc:
return '%s += %s' % (self.lhs, self.rhs)
else:
return '%s = %s(%s, %s)' % (self.lhs, self.operation, self.lhs, self.rhs)
mloubout marked this conversation as resolved.
Show resolved Hide resolved

# Pickling support
__reduce_ex__ = Pickable.__reduce_ex__

Expand Down
7 changes: 7 additions & 0 deletions devito/ir/support/properties.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,10 @@ class Properties(frozendict):
A mapper {Dimension -> {properties}}.
"""

@property
mloubout marked this conversation as resolved.
Show resolved Hide resolved
def dimensions(self):
return tuple(self)

def add(self, dims, properties=None):
m = dict(self)
for d in as_tuple(dims):
Expand Down Expand Up @@ -205,6 +209,9 @@ def is_parallel(self, dims):
return any(len(self[d] & {PARALLEL, PARALLEL_INDEP}) > 0
for d in as_tuple(dims))

def is_parallel_atomic(self, dims):
return any(len(self[d] & {PARALLEL_IF_ATOMIC}) > 0 for d in as_tuple(dims))

def is_parallel_relaxed(self, dims):
return any(len(self[d] & PARALLELS) > 0 for d in as_tuple(dims))

Expand Down
4 changes: 2 additions & 2 deletions devito/types/sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,11 +338,11 @@ def guard(self, expr=None):
condition=condition, indirect=True)

if expr is None:
out = self.indexify().xreplace({self._sparse_dim: cd})
out = self.indexify()._subs(self._sparse_dim, cd)
else:
functions = {f for f in retrieve_function_carriers(expr)
if f.is_SparseFunction}
out = indexify(expr).xreplace({f._sparse_dim: cd for f in functions})
out = indexify(expr).subs({f._sparse_dim: cd for f in functions})
mloubout marked this conversation as resolved.
Show resolved Hide resolved

return out, temps

Expand Down
26 changes: 25 additions & 1 deletion tests/test_dle.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
configuration, dimensions, info, cos)
from devito.exceptions import InvalidArgument
from devito.ir.iet import (Iteration, FindNodes, IsPerfectIteration,
retrieve_iteration_tree)
retrieve_iteration_tree, Expression)
from devito.passes.iet.languages.openmp import Ompizer, OmpRegion
from devito.tools import as_tuple
from devito.types import Scalar
Expand Down Expand Up @@ -765,6 +765,30 @@ def test_array_sum_reduction(self, so, dim):

assert np.allclose(f.data, 18)

def test_reduction_local(self):
grid = Grid((11, 11))
d = Dimension("i")
n = Function(name="n", dimensions=(d,), shape=(1,))
u = Function(name="u", grid=grid)
u.data.fill(1.)

op = Operator(Inc(n[0], u))
op()

cond = FindNodes(Expression).visit(op)
iterations = FindNodes(Iteration).visit(op)
# Should not creat any temporary for the reduction
assert len(cond) == 1
if configuration['language'] == 'C':
pass
elif Ompizer._support_array_reduction(configuration['compiler']):
assert "reduction(+:n[0])" in iterations[0].pragmas[0].value
else:
# E.g. old GCC's
assert "atomic update" in str(iterations[-1])

assert n.data[0] == 11*11

def test_array_max_reduction(self):
"""
Test generation of OpenMP sum-reduction clauses involving Function's.
Expand Down
9 changes: 8 additions & 1 deletion tests/test_dse.py
Original file line number Diff line number Diff line change
Expand Up @@ -2669,13 +2669,20 @@ def test_sparse_const(self):

u = TimeFunction(name="u", grid=grid)
src = PrecomputedSparseTimeFunction(name="src", grid=grid, npoint=1, nt=11,
r=2, interpolation_coeffs=np.ones((1, 3, 2)))
r=2, interpolation_coeffs=np.ones((1, 3, 2)),
gridpoints=[[5, 5, 5]])
u.data.fill(1.)

op = Operator(src.interpolate(u))

cond = FindNodes(Conditional).visit(op)
assert len(cond) == 1
assert len(cond[0].args['then_body'][0].exprs) == 1
assert all(e.is_scalar for e in cond[0].args['then_body'][0].exprs)

op()
assert np.all(src.data == 8)


class TestIsoAcoustic(object):

Expand Down