-
Notifications
You must be signed in to change notification settings - Fork 60
/
arguments.py
230 lines (212 loc) · 12.3 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import torch
def get_args():
parser = argparse.ArgumentParser(
description='Goal-Oriented-Semantic-Exploration')
# General Arguments
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--auto_gpu_config', type=int, default=1)
parser.add_argument('--total_num_scenes', type=str, default="auto")
parser.add_argument('-n', '--num_processes', type=int, default=5,
help="""how many training processes to use (default:5)
Overridden when auto_gpu_config=1
and training on gpus""")
parser.add_argument('--num_processes_per_gpu', type=int, default=6)
parser.add_argument('--num_processes_on_first_gpu', type=int, default=1)
parser.add_argument('--eval', type=int, default=0,
help='0: Train, 1: Evaluate (default: 0)')
parser.add_argument('--num_training_frames', type=int, default=10000000,
help='total number of training frames')
parser.add_argument('--num_eval_episodes', type=int, default=200,
help="number of test episodes per scene")
parser.add_argument('--num_train_episodes', type=int, default=10000,
help="""number of train episodes per scene
before loading the next scene""")
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument("--sim_gpu_id", type=int, default=0,
help="gpu id on which scenes are loaded")
parser.add_argument("--sem_gpu_id", type=int, default=-1,
help="""gpu id for semantic model,
-1: same as sim gpu, -2: cpu""")
# Logging, loading models, visualization
parser.add_argument('--log_interval', type=int, default=10,
help="""log interval, one log per n updates
(default: 10) """)
parser.add_argument('--save_interval', type=int, default=1,
help="""save interval""")
parser.add_argument('-d', '--dump_location', type=str, default="./tmp/",
help='path to dump models and log (default: ./tmp/)')
parser.add_argument('--exp_name', type=str, default="exp1",
help='experiment name (default: exp1)')
parser.add_argument('--save_periodic', type=int, default=500000,
help='Model save frequency in number of updates')
parser.add_argument('--load', type=str, default="0",
help="""model path to load,
0 to not reload (default: 0)""")
parser.add_argument('-v', '--visualize', type=int, default=0,
help="""1: Render the observation and
the predicted semantic map,
2: Render the observation with semantic
predictions and the predicted semantic map
(default: 0)""")
parser.add_argument('--print_images', type=int, default=0,
help='1: save visualization as images')
# Environment, dataset and episode specifications
parser.add_argument('-efw', '--env_frame_width', type=int, default=640,
help='Frame width (default:640)')
parser.add_argument('-efh', '--env_frame_height', type=int, default=480,
help='Frame height (default:480)')
parser.add_argument('-fw', '--frame_width', type=int, default=160,
help='Frame width (default:160)')
parser.add_argument('-fh', '--frame_height', type=int, default=120,
help='Frame height (default:120)')
parser.add_argument('-el', '--max_episode_length', type=int, default=500,
help="""Maximum episode length""")
parser.add_argument("--task_config", type=str,
default="tasks/objectnav_gibson.yaml",
help="path to config yaml containing task information")
parser.add_argument("--split", type=str, default="train",
help="dataset split (train | val | val_mini) ")
parser.add_argument('--camera_height', type=float, default=0.88,
help="agent camera height in metres")
parser.add_argument('--hfov', type=float, default=79.0,
help="horizontal field of view in degrees")
parser.add_argument('--turn_angle', type=float, default=30,
help="Agent turn angle in degrees")
parser.add_argument('--min_depth', type=float, default=0.5,
help="Minimum depth for depth sensor in meters")
parser.add_argument('--max_depth', type=float, default=5.0,
help="Maximum depth for depth sensor in meters")
parser.add_argument('--success_dist', type=float, default=1.0,
help="success distance threshold in meters")
parser.add_argument('--floor_thr', type=int, default=50,
help="floor threshold in cm")
parser.add_argument('--min_d', type=float, default=1.5,
help="min distance to goal during training in meters")
parser.add_argument('--max_d', type=float, default=100.0,
help="max distance to goal during training in meters")
parser.add_argument('--version', type=str, default="v1.1",
help="dataset version")
# Model Hyperparameters
parser.add_argument('--agent', type=str, default="sem_exp")
parser.add_argument('--lr', type=float, default=2.5e-5,
help='learning rate (default: 2.5e-5)')
parser.add_argument('--global_hidden_size', type=int, default=256,
help='global_hidden_size')
parser.add_argument('--eps', type=float, default=1e-5,
help='RL Optimizer epsilon (default: 1e-5)')
parser.add_argument('--alpha', type=float, default=0.99,
help='RL Optimizer alpha (default: 0.99)')
parser.add_argument('--gamma', type=float, default=0.99,
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--use_gae', action='store_true', default=False,
help='use generalized advantage estimation')
parser.add_argument('--tau', type=float, default=0.95,
help='gae parameter (default: 0.95)')
parser.add_argument('--entropy_coef', type=float, default=0.001,
help='entropy term coefficient (default: 0.01)')
parser.add_argument('--value_loss_coef', type=float, default=0.5,
help='value loss coefficient (default: 0.5)')
parser.add_argument('--max_grad_norm', type=float, default=0.5,
help='max norm of gradients (default: 0.5)')
parser.add_argument('--num_global_steps', type=int, default=20,
help='number of forward steps in A2C (default: 5)')
parser.add_argument('--ppo_epoch', type=int, default=4,
help='number of ppo epochs (default: 4)')
parser.add_argument('--num_mini_batch', type=str, default="auto",
help='number of batches for ppo (default: 32)')
parser.add_argument('--clip_param', type=float, default=0.2,
help='ppo clip parameter (default: 0.2)')
parser.add_argument('--use_recurrent_global', type=int, default=0,
help='use a recurrent global policy')
parser.add_argument('--num_local_steps', type=int, default=25,
help="""Number of steps the local policy
between each global step""")
parser.add_argument('--reward_coeff', type=float, default=0.1,
help="Object goal reward coefficient")
parser.add_argument('--intrinsic_rew_coeff', type=float, default=0.02,
help="intrinsic exploration reward coefficient")
parser.add_argument('--num_sem_categories', type=float, default=16)
parser.add_argument('--sem_pred_prob_thr', type=float, default=0.9,
help="Semantic prediction confidence threshold")
# Mapping
parser.add_argument('--global_downscaling', type=int, default=2)
parser.add_argument('--vision_range', type=int, default=100)
parser.add_argument('--map_resolution', type=int, default=5)
parser.add_argument('--du_scale', type=int, default=1)
parser.add_argument('--map_size_cm', type=int, default=2400)
parser.add_argument('--cat_pred_threshold', type=float, default=5.0)
parser.add_argument('--map_pred_threshold', type=float, default=1.0)
parser.add_argument('--exp_pred_threshold', type=float, default=1.0)
parser.add_argument('--collision_threshold', type=float, default=0.20)
# parse arguments
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
if args.auto_gpu_config:
num_gpus = torch.cuda.device_count()
if args.total_num_scenes != "auto":
args.total_num_scenes = int(args.total_num_scenes)
elif "objectnav_gibson" in args.task_config and \
"train" in args.split:
args.total_num_scenes = 25
elif "objectnav_gibson" in args.task_config and \
"val" in args.split:
args.total_num_scenes = 5
else:
assert False, "Unknown task config, please specify" + \
" total_num_scenes"
# GPU Memory required for the SemExp model:
# 0.8 + 0.4 * args.total_num_scenes (GB)
# GPU Memory required per thread: 2.6 (GB)
min_memory_required = max(0.8 + 0.4 * args.total_num_scenes, 2.6)
# Automatically configure number of training threads based on
# number of GPUs available and GPU memory size
gpu_memory = 1000
for i in range(num_gpus):
gpu_memory = min(gpu_memory,
torch.cuda.get_device_properties(
i).total_memory
/ 1024 / 1024 / 1024)
assert gpu_memory > min_memory_required, \
"""Insufficient GPU memory for GPU {}, gpu memory ({}GB)
needs to be greater than {}GB""".format(
i, gpu_memory, min_memory_required)
num_processes_per_gpu = int(gpu_memory / 2.6)
num_processes_on_first_gpu = \
int((gpu_memory - min_memory_required) / 2.6)
if args.eval:
max_threads = num_processes_per_gpu * (num_gpus - 1) \
+ num_processes_on_first_gpu
assert max_threads >= args.total_num_scenes, \
"""Insufficient GPU memory for evaluation"""
if num_gpus == 1:
args.num_processes_on_first_gpu = num_processes_on_first_gpu
args.num_processes_per_gpu = 0
args.num_processes = num_processes_on_first_gpu
assert args.num_processes > 0, "Insufficient GPU memory"
else:
num_threads = num_processes_per_gpu * (num_gpus - 1) \
+ num_processes_on_first_gpu
num_threads = min(num_threads, args.total_num_scenes)
args.num_processes_per_gpu = num_processes_per_gpu
args.num_processes_on_first_gpu = max(
0,
num_threads - args.num_processes_per_gpu * (num_gpus - 1))
args.num_processes = num_threads
args.sim_gpu_id = 1
print("Auto GPU config:")
print("Number of processes: {}".format(args.num_processes))
print("Number of processes on GPU 0: {}".format(
args.num_processes_on_first_gpu))
print("Number of processes per GPU: {}".format(
args.num_processes_per_gpu))
else:
args.sem_gpu_id = -2
if args.num_mini_batch == "auto":
args.num_mini_batch = max(args.num_processes // 2, 1)
else:
args.num_mini_batch = int(args.num_mini_batch)
return args