=======================================================================
- I have developed a state-of-the-art machine learning model that is capable of accurately predicting the delivery time of the delivery person. Additionally, I have implemented modular coding techniques to streamline the pipelines, allowing the system to be executed using a single python file. Furthermore, The code is able to generate artifacts and logs, providing the valuable insights into its performance.
- Initialize git
git init
- Clone the project
git clone https://github.com/dev-hack95/delivery_time_prediction
- enter the project directory
cd delivery_time_prediction
- install the requriments
pip install -r requirements.txt
- run(By running this file artifacts will automatically generated)
python src/pipeline/training_pipeline.py
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
│
├── artifacts <- For Saving model and processor pipeline pickle files
│
├── notebooks <- Jupyter notebooks
│
│
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── data_ingestion <- Scripts to turn raw data into features for modeling and data transformation
| | ├── data_ingestion.py
│ │ └── data_transform.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
| ├── pipeline <- Pipelines to train train and predict
│ │ │
│ │ ├── prediction_pipeline.py
│ │ └── training_pipeline.py
| |
│ ├── visualization <- Scripts to create exploratory and results oriented visualizations
│ | └── visualize.py
│ |
| ├── exception.py <- Script handle sys exceptions
| |
| ├── logger.py <- Script handle logging data to logs
| |
| └── utils.py
|
|
|
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io