Coroutine-based Kafka messaging library! CoroKafka is a scalable and simple to use C++ library built on top of cppkafka and quantum, supporting any number of parallel producers and consumers. Producing and consuming of messages is simplified by allowing applications to use their own native message formats which are automatically serialized and de-serialized by the connector. Message processing spreads to optimal number of parallel coroutines and threads. Integrated support for RdKafka headers. Currently the library only supports static topics and admin API is not yet available.
Supports C++14 and later.
- Rationale
- Quick start
- Building
- Installation
- Linking and Using
- Contributions
- License
- Code of Conduct
- Security Vulnerability Reporting
RdKafka is a popular high-performance C-based Kafka library, but using it requires a lot of extra code to be written which often leads to unwieldy bugs, misinterpreted API usage, and a lengthy development cycle. CppKafka was written with this in mind and provides a clean C++ raw-buffer wrapper on top of RdKafka with integrated object lifetime management as well as introducing various powerful utilities for producing and consuming, such as the BufferedProducer
and the BackoffCommitter
. Despite all this, CppKafka remains a thin library on top of RdKafka and the current library, CoroKafka extends its functionality into a rich-featured API.
Producing and consuming messages in a multi-threaded environment can easily be enhanced by using coroutines, which makes this a great integration scenario for Bloomberg's Quantum library.
CoroKafka offers a multitude of configuration options besides those offered natively by RdKafka. CoroKafka does not pretend to be the fastest or best performing Kafka implementation, its main goal being ease-of-use, convenience, as well as abstracting lots of boiler-plate code which all applications must write.
- Application publishes and consumes using native types. Serialization and deserialization is handled internally by CoroKafka and provides strict compile-time type-safety on both ends.
- Full support for any number of RdKafka headers for all message types.
- All RdKafka callbacks are supported as well as additional ones as provided by CppKafka.
- Producer and consumer polling is handled internally, so applications need not worry about blocking or missing heartbeats.
- Support for message retries, buffering, strict order guarantee delivery for all producers.
- Support for commit retries, auto-commit management as well as batching and pre-fetching of messages for increased performance.
- Support for balanced round-robin partition reading.
- Serialization and de-serialization is highly parallelized on coroutines. Various configuration options allow tweaking this behavior and how messages are delivered to the end application.
- Support for throttling consumers and producers as well as pausing and resuming streams.
- Consumers can either use dynamic partition assignment or static via config files.
- Processing received messages on the
quantum::Sequencer
, can easily create thousands of parallel streams of data yielding tremendous performance benefits. - Pre-processing of messages prior to de-serializing can allow for early poison-message detection.
- CoroKafka's
OffsetManager
allows proper ordering of commits for parallel streams, preventing higher offsets from being committed before lower ones on the same partition. - Synchronous and asynchronous producers.
The following code snippet shows how to setup a basic consumer and producer.
In CoroKafka applications must define serializers and de-serializer for each key, payload and header(s) they wish to send and receive. These specializations must be defined in either the global namespace or the corokafka
namespace.
The serializer must have the following signature:
template <typename T>
struct Serialize
{
std::vector<uint8_t> operator()(const T&);
}
Similarly the de-serializer must have the following signature:
template <typename T>
struct Deserialize
{
T operator()(const cppkafka::TopicPartition&, const cppkafka::Buffer&);
}
The first parameter indicates the partition on which this message arrived and can be used for logging, stats, anti-poison message prevention, etc.
//==========================================================================
// Serializers/De-serializers
//==========================================================================
//------------------------ serializers.h -----------------------------------
#include <corokafka/corokafka.h>
// Declare functions inside corokafka namespace...
namespace Bloomberg { namespace corokafka {
// This serializer is used for the key
template <>
struct Serialize<size_t> {
std::vector<uint8_t> operator()(const size_t& value) {
return {reinterpret_cast<const uint8_t*>(&value),
reinterpret_cast<const uint8_t*>(&value) + sizeof(size_t)};
}
};
// This serializer is used for the headers and the payload
template <>
struct Serialize<std::string> {
std::vector<uint8_t> operator()(const std::string& value) {
return {value.begin(), value.end()};
}
};
// This is the deserializer for the key
template <>
struct Deserialize<size_t> {
size_t operator()(const cppkafka::TopicPartition&,
const cppkafka::Buffer& buffer) {
return *static_cast<const size_t*>((void*)buffer.get_data());
}
};
// This is the deserializer for the header and payload
template <>
struct Deserialize<std::string> {
std::string operator()(const cppkafka::TopicPartition&,
const cppkafka::Buffer& buffer) {
return {buffer.begin(), buffer.end()};
}
};
}} //namespace Bloomberg::corokafka
//==========================================================================
// Topic
//==========================================================================
//------------------------------ mytopic.h ---------------------------------
#include <serializers.h>
using MyTopic = corokafka::Topic<size_t, std::string, coroakafka::Headers<std::string>>;
// Create a topic which will be shared between producer and consumer.
static MyTopic myTopic("my-topic", corokafka::Header<std::string>("Header1");
In the following example we will be producing some messages with a key of type size_t
, a payload of type
std::string
and a simple header called Header1. For full producer API see here.
//==========================================================================
// Producer setup
//==========================================================================
#include <mytopic.h>
// Define a delivery report callback (optional - see documentation for all available callbacks)
void deliveryReportCallback(const corokafka::ProducerMetadata& metadata,
const corokafka::SentMessage& msg)
{
std::cout << "Produced message for [" << metadata.getInternalName()
<< ":" << msg.getTopic() << "]"
<< std::endl;
if (msg) {
if (msg.getError()) {
return;
}
//print message contents
std::cout << "Message key: " << *reinterpret_cast<const size_t*>(msg.getKeyBuffer().get_data())
<< " Message content: [" << (std::string)msg.getPayloadBuffer() << "]"
<< " Message partition: " << msg.getPartition()
<< " Message offset: " << msg.getOffset()
<< std::endl;
}
}
// Define a log callback (optional - see documentation for all available callbacks)
void logCallback(const corokafka::Metadata& metadata,
cppkafka::LogLevel level,
const std::string& facility,
const std::string& message)
{
std::cout << "Log from: " << metadata.getInternalName()
<< " facility: " << facility
<< " text: " << message << std::endl;
}
// Create a topic configuration (optional)
std::initializer_list<cppkafka::ConfigurationOption > topicOptions = {
{ "produce.offset.report", true },
{ "request.required.acks", -1 }
};
// Create a producer configuration (only 'metadata.broker.list' setting is mandatory)
std::initializer_list<cppkafka::ConfigurationOption > producerOptions = {
{ "metadata.broker.list", "broker_url:port" },
{ "api.version.request", true },
{ "internal.producer.retries", 5 }
};
// Associate the topic and producer configuration with a topic name.
// Note: any number of producer configs/topics can be created.
corokafka::ProducerConfiguration config(myTopic, producerOptions, topicOptions);
// Add the callbacks
config.setDeliveryReportCallback(deliveryReportCallback);
config.setLogCallback(logCallback);
// Create the connector config (optional)
corokafka::ConnectorConfiguration connectorConfiguration(
{{ "internal.connector.poll.interval.ms", 100 }}
);
// Combine all the configs together
corokafka::ConfigurationBuilder builder;
builder(config).(connectorConfiguration);
// Create the connector
corokafka::Connector connector(std::move(builder));
// Produce 10 messages
corokafka::ProducerManager& producer = connector.producer(); //get handle on producer
// Produce 10 messages. 'i' represents the 'key'
for (size_t i = 0; i < 10; ++i) {
//produce a message synchronously (async production also available)
producer.send(myTopic, 0, i, std::string("Hello world"), std::string("This is some header"));
}
In the following example we will be consuming messages with a key of type size_t
, a payload of type
std::string
and a simple header called Header1. For full consumer API see here.
//==========================================================================
// Message worker queue and processor
//==========================================================================
#include <mytopic.h>
std::mutex messageMutex;
std::deque<corokafka::ReceivedMessage<size_t, std::string>> messages;
void messageProcessor()
{
while (1)
{
if (!messages.empty()) {
std::lock_guard<std::mutex> lock(messageMutex);
corokafka::ReceivedMessage<size_t, std::string> message = std::move(messages.front());
messages.pop_front();
//get the headers
const ckf::HeaderPack &headers = message.getHeaders();
std::string headerName;
std::string headerValue;
if (headers) {
headerName = headers.getAt<std::string>(0).name();
//get header value (type unsafe)
headerValue = headers.getAt<std::string>(0).value();
//get header value (type-safe)
//headerValue = message.getHeaderAt<0>();
}
std::ostringstream oss;
oss << "Received message from topic: " << message.getTopic()
<< " partition: " << message.getPartition()
<< " offset: " << message.getOffset()
<< " key: " << message.getKey()
<< " header: " << headerName << " :: " << headerValue
<< " payload: " << message.getPayload()
<< std::endl;
std::cout << oss.str() << std::endl;
//commit the message. This can also be done automatically (see consumer configuration).
message.commit();
}
// Pause a little. Typically this could be implemented with a condition variable being signalled
// when a message gets enqueued.
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
//==========================================================================
// Consumer setup
//==========================================================================
#include <corokafka/corokafka.h>
// Define a log callback (optional - see documentation for all available callbacks)
void logCallback(const corokafka::Metadata& metadata,
cppkafka::LogLevel level,
const std::string& facility,
const std::string& message)
{
std::cout << "Log from: " << metadata.getInternalName()
<< " facility: " << facility
<< " text: " << message << std::endl;
}
// Define a receiver callback (mandatory)
void receiverCallback(MyTopic::receivedMessage message)
{
if (!message) return; //invalid message
if (message.getError()) {
std::cout << "Enqueued message from topic: " << message.getTopic()
<< " with error: " << message.getError().to_string()
<< std::endl;
}
else {
std::cout << "Enqueued message from topic: " << message.getTopic()
<< " partition: " << message.getPartition()
<< " offset: " << message.getOffset()
<< " key: " << message.getKey()
<< " payload: " << (std::string)message.getPayload()
<< std::endl;
}
// Post message unto a worker queue...
std::lock_guard<std::mutex> lock(messageMutex);
messages.emplace_back(std::move(message));
}
// Create the producer and topic config
std::initializer_list<cppkafka::ConfigurationOption > consumerOptions = {
{ "metadata.broker.list", "broker_url:port" },
{ "group.id", "my-group" },
{ "api.version.request", true },
{ "enable.partition.eof", true },
{ "enable.auto.commit", true },
{ "auto.commit.interval.ms", 1000 },
{ "auto.offset.reset", "earliest" },
{ "partition.assignment.strategy", "roundrobin" },
{ "internal.consumer.pause.on.start", false }
};
//create the consumer configuration
corokafka::ConsumerConfiguration config(myTopic, consumerOptions, {}, receiverCallback);
//add the callbacks
config.setLogCallback(logCallback);
// Optionally set initial partition assignment (4 partitions per topic)
config.assignInitialPartitions(corokafka::PartitionStrategy::Dynamic,
{
{topic, 0, cppkafka::TopicPartition::OFFSET_BEGINNING},
{topic, 1, cppkafka::TopicPartition::OFFSET_BEGINNING},
{topic, 2, cppkafka::TopicPartition::OFFSET_BEGINNING},
{topic, 3, cppkafka::TopicPartition::OFFSET_BEGINNING}
});
// Create the connector (this will subscribe all consumers and start receiving messages)
corokafka::Connector connector(corokafka::ConfigurationBuilder(config));
// Start processing messages in the background...
std::thread t(messageProcessor);
Create a build
directory and call CMake with various options below. Then simply call make
.
> cmake -B build <cmake_options> .
> cd build && make
Various CMake options can be used to configure the output:
COROKAFKA_BUILD_SHARED
: Build CoroKafka as a shared library. DefaultOFF
.COROKAFKA_ENABLE_PIC
: Enable position independent code for shared library builds. DefaultON
.COROKAFKA_CPPKAFKA_STATIC_LIB
: Link with CppKafka static library. DefaultON
.COROKAFKA_RDKAFKA_STATIC_LIB
: Link with RdKafka static library. DefaultON
.COROKAFKA_BUILD_DOC
: Build Doxygen documentation. DefaultOFF
.COROKAFKA_ENABLE_DOT
: Enable generation of DOT viewer files. DefaultOFF
.COROKAFKA_VERBOSE_MAKEFILE
: Enable verbose cmake output. DefaultON
.COROKAFKA_ENABLE_TESTS
: Builds thetests
target. DefaultOFF
.COROKAFKA_BOOST_STATIC_LIBS
: Link with Boost static libraries. DefaultON
.COROKAFKA_BOOST_USE_MULTITHREADED
: Use Boost multi-threaded libraries. DefaultON
.COROKAFKA_BOOST_USE_VALGRIND
: Enable Valgrind on Boost. DefaultOFF
.COROKAFKA_INSTALL_ROOT
: Specify custom install path. Default is/usr/local/include
for Linux orc:/Program Files
for Windows.RDKAFKA_ROOT
: Specify a different RdKafka install directory.CPPKAFKA_ROOT
: Specify a different CppKafka install directory.QUANTUM_ROOT
: Specify a different Quantum install directory.BOOST_ROOT
: Specify a different Boost install directory.GTEST_ROOT
: Specify a different GTest install directory.COROKAFKA_PKGCONFIG_DIR
: Install location of the .pc file. Default isshare/pkgconfig
.COROKAFKA_EXPORT_PKGCONFIG
: Generatecorokafka.pc
file. DefaultON
.COROKAFKA_CMAKE_CONFIG_DIR
: Install location of the package config file and exports. Default isshare/cmake/CoroKafka
.COROKAFKA_EXPORT_CMAKE_CONFIG
: Generate CMake config, target and version files. DefaultON
.
Note: options must be preceded with -D
when passed as arguments to CMake.
To install, simply run make install
in the build directory
> cd build && make install
To use the library simply include <corokafka/corokafka.h>
in your application.
In you application CMakeLists.txt you can load the libraries simply by calling:
find_package(CoroKafka REQUIRED)
target_link_libraries(<your_target> CoroKafka::corokafka <other_dependencies>)
We ❤️ contributions.
Have you had a good experience with this project? Why not share some love and contribute code, or just let us know about any issues you had with it?
We welcome issue reports here; be sure to choose the proper issue template for your issue, so that we can be sure you're providing the necessary information.
Before sending a Pull Request, please make sure you read our Contribution Guidelines.
Please read the LICENSE file.
This project has adopted a Code of Conduct. If you have any concerns about the Code, or behavior which you have experienced in the project, please contact us at [email protected].
If you believe you have identified a security vulnerability in this project, please send email to the project team at [email protected], detailing the suspected issue and any methods you've found to reproduce it.
Please do NOT open an issue in the GitHub repository, as we'd prefer to keep vulnerability reports private until we've had an opportunity to review and address them.