Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 40 additions & 22 deletions tests/unit/test_pipe.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
import copy

import torch
import torch.nn as nn
Expand All @@ -13,8 +14,7 @@

from deepspeed.runtime.pipe.topology import PipeDataParallelTopology, PipeModelDataParallelTopology
PipeTopo = PipeDataParallelTopology
import deepspeed.runtime.pipe.module as PipelineModule
from deepspeed.runtime.pipe.module import LayerSpec
from deepspeed.runtime.pipe.module import PipelineModule, LayerSpec

from common import distributed_test

Expand Down Expand Up @@ -74,7 +74,13 @@ def forward(self, x, y):
return self.loss_fn(x, y)


class AlexNetPipe(PipelineModule.PipelineModule):
class AlexNetPipe(AlexNet):
def to_layers(self):
layers = [*self.features, lambda x: x.view(x.size(0), -1), self.classifier]
return layers


class AlexNetPipeSpec(PipelineModule):
def __init__(self, num_classes=10, **kwargs):
self.num_classes = num_classes
specs = [
Expand Down Expand Up @@ -135,6 +141,9 @@ def train_cifar(model, args, num_steps=400, average_dp_losses=True, fp16=True, s
with torch.random.fork_rng(devices=[torch.cuda.current_device()]):
ds_utils.set_random_seed(seed)

# disable dropout
model.eval()

trainset = cifar_trainset(fp16=fp16)
args.local_rank = dist.get_rank()

Expand All @@ -148,7 +157,7 @@ def train_cifar(model, args, num_steps=400, average_dp_losses=True, fp16=True, s
for step in range(num_steps):
loss = engine.train_batch()
losses.append(loss.item())
if step % 50 == 0:
if step % 50 == 0 and dist.get_rank() == 0:
print(f'STEP={step} LOSS={loss.item()}')

if average_dp_losses:
Expand All @@ -160,18 +169,16 @@ def train_cifar(model, args, num_steps=400, average_dp_losses=True, fp16=True, s
return losses


@pytest.mark.parametrize('base_topo,test_topo',
@pytest.mark.parametrize('topo',
[
(PipeTopo(num_pp=1,
num_dp=4),
PipeTopo(num_pp=2,
num_dp=2)),
(PipeTopo(num_pp=1,
num_dp=4),
PipeTopo(num_pp=4,
num_dp=1)),
PipeTopo(num_pp=1,
num_dp=4),
PipeTopo(num_pp=2,
num_dp=2),
PipeTopo(num_pp=4,
num_dp=1),
])
def test_pipe_cifar10_seedlayers(base_topo, test_topo, tmpdir):
def test_pipe_cifar10(topo, tmpdir):
config_dict = {
"train_batch_size": 16,
"train_micro_batch_size_per_gpu": 4,
Expand Down Expand Up @@ -199,21 +206,32 @@ def test_pipe_cifar10_seedlayers(base_topo, test_topo, tmpdir):
}
args = args_from_dict(tmpdir, config_dict)

# Allocate model for consistent initial weights.
init_net = AlexNetPipe()

@distributed_test(world_size=4)
def _helper(base_topo, test_topo, tmpdir, steps=500):
def _helper(topo, tmpdir, steps=500):
assert steps >= 100

base_model = AlexNetPipe(num_classes=10,
topology=base_topo,
seed_layers=config_dict['pipeline']['seed_layers'])
base_net = copy.deepcopy(init_net)
base_model = PipelineModule(layers=base_net.to_layers(),
num_stages=1,
loss_fn=nn.CrossEntropyLoss())

# Train with just data parallelism
base_losses = train_cifar(base_model,
args,
num_steps=steps,
fp16=config_dict['fp16']['enabled'])

test_model = AlexNetPipe(num_classes=10,
topology=test_topo,
seed_layers=config_dict['pipeline']['seed_layers'])
test_net = copy.deepcopy(init_net)
test_model = PipelineModule(layers=test_net.to_layers(),
topology=topo,
loss_fn=nn.CrossEntropyLoss())

#test_model = AlexNetPipe(num_classes=10,
# topology=test_topo,
# seed_layers=config_dict['pipeline']['seed_layers'])
test_losses = train_cifar(test_model,
args,
num_steps=steps,
Expand Down Expand Up @@ -246,4 +264,4 @@ def _helper(base_topo, test_topo, tmpdir, steps=500):
test_avg = sum(test) / len(test)
assert rel_diff(base_avg, test_avg) < 0.03

_helper(base_topo, test_topo, tmpdir)
_helper(topo, tmpdir)