-
Notifications
You must be signed in to change notification settings - Fork 4.7k
Kernel injection fixes #601
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,216 @@ | ||
| import copy | ||
| import torch | ||
| import deepspeed | ||
|
|
||
| from deepspeed.ops import DeepSpeedTransformerConfig | ||
|
|
||
|
|
||
| def _copy_child_transformer_state(new_module, orig_child, pre_layer_norm): | ||
| # copy relevant state from original child -> new module | ||
| qw = orig_child.attention.self.query.weight | ||
| qb = orig_child.attention.self.query.bias | ||
| kw = orig_child.attention.self.key.weight | ||
| kb = orig_child.attention.self.key.bias | ||
| vw = orig_child.attention.self.value.weight | ||
| vb = orig_child.attention.self.value.bias | ||
|
|
||
| qkvw = torch.cat((qw, kw, vw), 0) | ||
| qkvb = torch.cat((qb, kb, vb), 0) | ||
|
|
||
| #qw.data,kw.data,vw.data = torch.chunk(qkvw, 3, axis=0) | ||
| #qb.data,kb.data,vb.data = torch.chunk(qkvb, 3, axis=0) | ||
|
|
||
| new_module.attn_qkvw.data = qkvw | ||
| new_module.attn_qkvb.data = qkvb | ||
| new_module.attn_ow.data = orig_child.attention.output.dense.weight | ||
| new_module.attn_ob.data = orig_child.attention.output.dense.bias | ||
| if pre_layer_norm: | ||
| attention_layernorm = orig_child.PostAttentionLayerNorm | ||
| else: | ||
| attention_layernorm = orig_child.attention.output.LayerNorm | ||
| new_module.attn_nw.data = attention_layernorm.weight | ||
| new_module.attn_nb.data = attention_layernorm.bias | ||
| if pre_layer_norm: | ||
| intermediate_ff = orig_child.intermediate.dense_act | ||
| else: | ||
| intermediate_ff = orig_child.intermediate.dense | ||
| new_module.inter_w.data = intermediate_ff.weight | ||
| new_module.inter_b.data = intermediate_ff.bias | ||
| new_module.output_w.data = orig_child.output.dense.weight | ||
| new_module.output_b.data = orig_child.output.dense.bias | ||
| if pre_layer_norm: | ||
| transformer_layernorm = orig_child.PreAttentionLayerNorm | ||
| else: | ||
| transformer_layernorm = orig_child.output.LayerNorm | ||
| new_module.norm_w.data = transformer_layernorm.weight | ||
| new_module.norm_b.data = transformer_layernorm.bias | ||
|
|
||
|
|
||
| def _replace_transformer_layer(orig_layer_impl, model, transformer_config): | ||
| """ Replace bert-style transformer layers with DeepSpeed's transformer layer | ||
| Arguments: | ||
| orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, | ||
| e.g., transformers.modeling_bert.BertLayer. | ||
| model (torch.nn.Module): user's nn.module representing their model | ||
| transformer_config (dict): deepspeed transformer layer config containing hidden size, attention heads, etc. | ||
| Returns: | ||
| Updated nn.module with replaced transformer layers | ||
| """ | ||
| def replace_fn(child): | ||
| new_module = deepspeed.DeepSpeedTransformerLayer(transformer_config) | ||
| _copy_child_transformer_state(new_module, | ||
| child, | ||
| transformer_config.pre_layer_norm) | ||
|
|
||
| return new_module | ||
|
|
||
| return _replace_module(model=model, | ||
| orig_class=orig_layer_impl, | ||
| replace_fn=replace_fn) | ||
|
|
||
|
|
||
| def replace_module(orig_module_impl, model, replacement_module_config): | ||
| """ Replace client module | ||
| Arguments: | ||
| orig_module_impl (torch.nn.Module): original module implementation to replace, | ||
| e.g., transformers.modeling_bert.BertLayer. | ||
| model (torch.nn.Module): user's nn.module representing their model | ||
| replacement_module_config (dict): deepspeed replacement module config (e.g., DeepSpeedTransformerConfig) . | ||
|
|
||
| Returns: | ||
| Updated nn.module with replaced modules | ||
| """ | ||
| assert isinstance(replacement_module_config, DeepSpeedTransformerConfig), \ | ||
| 'Only DeepSpeedTransformerConfig is currently supported as replacement config' | ||
|
|
||
| return _replace_transformer_layer(orig_layer_impl=orig_module_impl, | ||
| model=model, | ||
| transformer_config=replacement_module_config) | ||
|
|
||
|
|
||
| def _revert_transformer_layer(orig_layer_impl, model, bert_config, transformer_config): | ||
| """ Revert DeepSpeed's transformer layer back to original bert-style transformer layer | ||
| Arguments: | ||
| orig_layer_impl (torch.nn.Module): the original transformer layer implementation that was replaced, | ||
| e.g., transformers.modeling_bert.BertLayer. | ||
| model (torch.nn.Module): user's nn.module representing their model | ||
| bert_config (dict): model config containing hidden size, attention heads, etc. | ||
| transformer_config (dict): deepspeed tranformer config used for replacement | ||
|
|
||
| Returns: | ||
| Updated nn.module with original bert-style transformer layers | ||
| """ | ||
| def replace_fn(child): | ||
| #from turing.nvidia_modelingpreln import BertLayer | ||
| orig_module = orig_layer_impl(bert_config) | ||
|
|
||
| # copy relevant state from child -> original module | ||
| qkvw = child.attn_qkvw.data | ||
| qkvb = child.attn_qkvb.data | ||
|
|
||
| qw, kw, vw = torch.chunk(qkvw, 3, axis=0) | ||
| qb, kb, vb = torch.chunk(qkvb, 3, axis=0) | ||
|
|
||
| orig_module.attention.self.query.weight.data = qw | ||
| orig_module.attention.self.query.bias.data = qb | ||
| orig_module.attention.self.key.weight.data = kw | ||
| orig_module.attention.self.key.bias.data = kb | ||
| orig_module.attention.self.value.weight.data = vw | ||
| orig_module.attention.self.value.bias.data = vb | ||
|
|
||
| orig_module.attention.output.dense.weight.data = child.attn_ow.data | ||
| orig_module.attention.output.dense.bias.data = child.attn_ob.data | ||
|
|
||
| attn_ln_w = child.attn_nw.data | ||
| attn_ln_b = child.attn_nb.data | ||
| if transformer_config.pre_layer_norm: | ||
| orig_module.PostAttentionLayerNorm.weight.data = attn_ln_w | ||
| orig_module.PostAttentionLayerNorm.bias.data = attn_ln_b | ||
| else: | ||
| orig_module.attention.output.LayerNorm.weight.data = attn_ln_w | ||
| orig_module.attention.output.LayerNorm.bias.data = attn_ln_b | ||
|
|
||
| inter_ff_w = child.inter_w.data | ||
| inter_ff_b = child.inter_b.data | ||
| if transformer_config.pre_layer_norm: | ||
| orig_module.intermediate.dense_act.weight.data = inter_ff_w | ||
| orig_module.intermediate.dense_act.bias.data = inter_ff_b | ||
| else: | ||
| orig_module.intermediate.dense.weight.data = inter_ff_w | ||
| orig_module.intermediate.dense.bias.data = inter_ff_b | ||
|
|
||
| orig_module.output.dense.weight.data = child.output_w.data | ||
| orig_module.output.dense.bias.data = child.output_b.data | ||
|
|
||
| transformer_ln_w = child.norm_w.data | ||
| transformer_ln_b = child.norm_b.data | ||
| if transformer_config.pre_layer_norm: | ||
| orig_module.PreAttentionLayerNorm.weight.data = transformer_ln_w | ||
| orig_module.PreAttentionLayerNorm.bias.data = transformer_ln_b | ||
| else: | ||
| orig_module.output.LayerNorm.weight.data = transformer_ln_w | ||
| orig_module.output.LayerNorm.bias.data = transformer_ln_b | ||
| return orig_module | ||
|
|
||
| return _replace_module(model=model, | ||
| orig_class=deepspeed.DeepSpeedTransformerLayer, | ||
| replace_fn=replace_fn) | ||
|
|
||
|
|
||
| def revert_module(orig_module_impl, | ||
| model, | ||
| orig_module_config, | ||
| replacement_module_config): | ||
| """ Revert DeepSpeed's module back to original client module | ||
| Arguments: | ||
| orig_module_impl (torch.nn.Module): the original module that was replaced, | ||
| e.g., transformers.modeling_bert.BertLayer. | ||
| model (torch.nn.Module): user's nn.module representing their model | ||
| orig_module_config (dict): original module configuration | ||
| replacement_module_config (dict): replacement deepspeed module configuration | ||
|
|
||
| Returns: | ||
| Updated nn.module with original bert-style transformer layers | ||
| """ | ||
| assert isinstance(replacement_module_config, DeepSpeedTransformerConfig), \ | ||
| 'Only DeepSpeedTransformerConfig is currently supported as replacement config' | ||
|
|
||
| return _revert_transformer_layer(orig_layer_impl=orig_module_impl, | ||
| model=model, | ||
| bert_config=orig_module_config, | ||
| transformer_config=replacement_module_config) | ||
|
|
||
|
|
||
| def _replace_module(model, orig_class, replace_fn): | ||
| """ Scan the model for instances of ``orig_clas:`` to replace using ``replace_fn``. | ||
| Arguments: | ||
| model (torch.nn.Module): the model to augment | ||
| orig_class (torch.nn.Module): the module to search for | ||
| replace_fn (method): a method to convert instances of ``orig_class`` to the | ||
| desired type and return a new instance. | ||
|
|
||
| Returns: | ||
| A modified ``model``. | ||
| """ | ||
| policy = {orig_class: replace_fn} | ||
| return _replace_module_using_policies(model, policy) | ||
|
|
||
|
|
||
| def _replace_module_using_policies(model, policies): | ||
| """ Traverse model's children recursively and apply any transformations in ``policies``. | ||
| Arguments: | ||
| model (torch.nn.Module): model to augment | ||
| policies (dict): Mapping of source class to replacement function. | ||
|
|
||
| Returns: | ||
| Modified ``model``. | ||
| """ | ||
| for name, child in model.named_children(): | ||
| if child.__class__ in policies: | ||
| orig = repr(child) | ||
| setattr(model, name, policies[child.__class__](child)) | ||
| new = getattr(model, name) | ||
| else: | ||
| _replace_module_using_policies(child, policies) | ||
|
|
||
| return model |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.