Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 106 additions & 0 deletions tests/unit/ops/transformer/inference/test_residual_add.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
"""
Copyright 2022 The Microsoft DeepSpeed Team
"""

import pytest
import torch
import deepspeed
from deepspeed.ops.op_builder import InferenceBuilder

if not deepspeed.ops.__compatible_ops__[InferenceBuilder.NAME]:
pytest.skip("Inference ops are not available on this system",
allow_module_level=True)


def allclose(x, y):
assert x.dtype == y.dtype
rtol, atol = {torch.float32: (5e-4, 5e-5), torch.float16: (3e-2, 2e-2)}[x.dtype]
return torch.allclose(x, y, rtol=rtol, atol=atol)


@pytest.fixture
def inference_module():
return InferenceBuilder().load()


def run_residual_add_reference(hidden_state,
residual,
attention_output,
final_bias,
attention_output_bias,
mlp_after_attn,
add_bias,
mp_size=1):
residual_scaled = residual / mp_size
final_bias_scaled = final_bias / mp_size
attention_output_scaled = attention_output / mp_size
attention_output_bias_scaled = attention_output_bias / mp_size

hidden_state = hidden_state + residual_scaled + final_bias_scaled

# in case that mlp_after_attn = True, we additionally need to scale attention_output as well
if mlp_after_attn:
hidden_state += attention_output_scaled
else:
hidden_state += attention_output

# TODO: The `add_bias` flag is used only for `launch_gptj_residual_add` kernel (aka, mlp_after_attn is False).
# This is a hack to get the parametarized add_bias to work. We need to fix this after refactoring the kernels.
add_bias = True if mlp_after_attn else add_bias

if add_bias:
hidden_state = hidden_state + attention_output_bias_scaled

return hidden_state


@pytest.mark.inference
@pytest.mark.parametrize("batch", [1, 2])
@pytest.mark.parametrize("sequence", [1, 128, 255])
@pytest.mark.parametrize("hidden_dim", [512, 1232, 4096])
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
@pytest.mark.parametrize("mlp_after_attn", [True, False])
@pytest.mark.parametrize("add_bias", [True, False])
@pytest.mark.parametrize("mp_size", [1, 2])
# @pytest.mark.parametrize("preln", [True]) # TODO: add support for preln
def test_residual_add(inference_module,
batch,
sequence,
hidden_dim,
dtype,
mlp_after_attn,
add_bias,
mp_size):
preln = True
ds_out = torch.randn((batch, sequence, hidden_dim), dtype=dtype, device='cuda')
residual = torch.randn((batch, sequence, hidden_dim), dtype=dtype, device='cuda')
attention_output = torch.randn((batch,
sequence,
hidden_dim),
dtype=dtype,
device='cuda')
final_bias = torch.randn((hidden_dim), dtype=dtype, device='cuda')
attention_output_bias = torch.randn((hidden_dim), dtype=dtype, device='cuda')

ref_out = ds_out.clone()
ref_out = run_residual_add_reference(ref_out,
residual,
attention_output,
final_bias,
attention_output_bias,
mlp_after_attn,
add_bias,
mp_size)

inference_module.residual_add(
ds_out, # in-place update of ds_out. Needs reafactoring to be consistent with other kernels.
residual,
attention_output,
final_bias,
attention_output_bias,
mp_size,
mlp_after_attn,
add_bias,
preln)

assert (allclose(ds_out, ref_out))