Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions tests/unit/ops/transformer/inference/test_bias_relu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
Copyright 2022 The Microsoft DeepSpeed Team
"""

import pytest
import torch
import deepspeed
from deepspeed.ops.op_builder import InferenceBuilder

if not deepspeed.ops.__compatible_ops__[InferenceBuilder.NAME]:
pytest.skip("Inference ops are not available on this system",
allow_module_level=True)

inference_module = None
torch_minor_version = None


def allclose(x, y):
assert x.dtype == y.dtype
rtol, atol = {torch.float32: (5e-4, 5e-5), torch.float16: (3e-2, 2e-3)}[x.dtype]
return torch.allclose(x, y, rtol=rtol, atol=atol)


def run_bias_relu_reference(activations, bias):
# Expected behavior is that of casting to float32 internally
return torch.nn.functional.relu(
activations.to(torch.float32) + bias.to(torch.float32)).to(activations.dtype)


def run_bias_relu_ds(activations, bias):
global inference_module
if inference_module is None:
inference_module = InferenceBuilder().load()
if activations.dtype == torch.float16:
return inference_module.bias_relu_fp16(activations, bias)
else:
return inference_module.bias_relu_fp32(activations, bias)


@pytest.mark.inference
@pytest.mark.parametrize("batch", [1, 2])
@pytest.mark.parametrize("sequence", [1, 128, 255])
@pytest.mark.parametrize("channels", [512, 1232, 4096])
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
def test_bias_relu(batch, sequence, channels, dtype):
activations_ds = torch.randn((batch, sequence, channels), dtype=dtype, device='cuda')
bias_ds = torch.randn((channels), dtype=dtype, device='cuda')

activations_ref = activations_ds.clone().detach()
bias_ref = bias_ds.clone().detach()

ds_out = run_bias_relu_ds(activations_ds, bias_ds)
ref_out = run_bias_relu_reference(activations_ref, bias_ref)
assert (allclose(ds_out, ref_out))