generated from datawhalechina/repo-template
-
Notifications
You must be signed in to change notification settings - Fork 326
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5533175
commit 5293898
Showing
3 changed files
with
1,618 additions
and
0 deletions.
There are no files selected for viewing
163 changes: 163 additions & 0 deletions
163
Model_Architecture_Discussions/olmo/configuration_olmo.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
"""OLMo model configuration""" | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class OlmoConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`OlmoModel`]. It is used to instantiate an OLMo | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the [allenai/OLMo-7B-hf](https://huggingface.co/allenai/OLMo-7B-hf). | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 50304): | ||
Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`OlmoModel`] | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 11008): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer decoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer decoder. | ||
num_key_value_heads (`int`, *optional*): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | ||
`num_attention_heads`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 2048): | ||
The maximum sequence length that this model might ever be used with. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
pad_token_id (`int`, *optional*, defaults to 1): | ||
Padding token id. | ||
bos_token_id (`int`, *optional*): | ||
Beginning of stream token id. | ||
eos_token_id (`int`, *optional*, defaults to 50279): | ||
End of stream token id. | ||
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||
Whether to tie weight embeddings | ||
rope_theta (`float`, *optional*, defaults to 10000.0): | ||
The base period of the RoPE embeddings. | ||
rope_scaling (`Dict`, *optional*): | ||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | ||
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | ||
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | ||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how | ||
these scaling strategies behave: | ||
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | ||
experimental feature, subject to breaking API changes in future versions. | ||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | ||
Whether to use a bias in the query, key, value and output projection layers during self-attention. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
clip_qkv (`float`, *optional*): | ||
If not `None`, elements of query, key and value attention states are clipped so that their | ||
absolute value does not exceed this value. | ||
```python | ||
>>> from transformers import OlmoModel, OlmoConfig | ||
>>> # Initializing a OLMo 7B style configuration | ||
>>> configuration = OlmoConfig() | ||
>>> # Initializing a model from the OLMo 7B style configuration | ||
>>> model = OlmoModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "olmo" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=50304, | ||
hidden_size=4096, | ||
intermediate_size=11008, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=None, | ||
hidden_act="silu", | ||
max_position_embeddings=2048, | ||
initializer_range=0.02, | ||
use_cache=True, | ||
pad_token_id=1, | ||
bos_token_id=None, | ||
eos_token_id=50279, | ||
tie_word_embeddings=False, | ||
rope_theta=10000.0, | ||
rope_scaling=None, | ||
attention_bias=False, | ||
attention_dropout=0.0, | ||
clip_qkv=None, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.use_cache = use_cache | ||
self.rope_theta = rope_theta | ||
self.rope_scaling = rope_scaling | ||
self._rope_scaling_validation() | ||
self.attention_bias = attention_bias | ||
self.attention_dropout = attention_dropout | ||
self.clip_qkv = clip_qkv | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) | ||
|
||
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation | ||
def _rope_scaling_validation(self): | ||
""" | ||
Validate the `rope_scaling` configuration. | ||
""" | ||
if self.rope_scaling is None: | ||
return | ||
|
||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | ||
raise ValueError( | ||
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" | ||
) | ||
rope_scaling_type = self.rope_scaling.get("type", None) | ||
rope_scaling_factor = self.rope_scaling.get("factor", None) | ||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | ||
raise ValueError( | ||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | ||
) | ||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | ||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") |
Oops, something went wrong.