generated from datawhalechina/repo-template
-
Notifications
You must be signed in to change notification settings - Fork 326
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #38 from Ethan-Chen-plus/main
add olmo and gptj
- Loading branch information
Showing
6 changed files
with
3,502 additions
and
0 deletions.
There are no files selected for viewing
202 changes: 202 additions & 0 deletions
202
Model_Architecture_Discussions/gptj/configuration_gptj.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
"""GPT-J model configuration""" | ||
|
||
from collections import OrderedDict | ||
from typing import Any, List, Mapping, Optional | ||
|
||
from transformers import PreTrainedTokenizer, TensorType, is_torch_available | ||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.onnx import OnnxConfigWithPast, PatchingSpec | ||
from transformers.utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class GPTJConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the GPT-J | ||
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from | ||
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] | ||
for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 50400): | ||
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`GPTJModel`]. | ||
n_positions (`int`, *optional*, defaults to 2048): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
n_embd (`int`, *optional*, defaults to 4096): | ||
Dimensionality of the embeddings and hidden states. | ||
n_layer (`int`, *optional*, defaults to 28): | ||
Number of hidden layers in the Transformer encoder. | ||
n_head (`int`, *optional*, defaults to 16): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
rotary_dim (`int`, *optional*, defaults to 64): | ||
Number of dimensions in the embedding that Rotary Position Embedding is applied to. | ||
n_inner (`int`, *optional*, defaults to None): | ||
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd | ||
activation_function (`str`, *optional*, defaults to `"gelu_new"`): | ||
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. | ||
resid_pdrop (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
embd_pdrop (`int`, *optional*, defaults to 0.1): | ||
The dropout ratio for the embeddings. | ||
attn_pdrop (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention. | ||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | ||
The epsilon to use in the layer normalization layers. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). | ||
Example: | ||
```python | ||
>>> from transformers import GPTJModel, GPTJConfig | ||
>>> # Initializing a GPT-J 6B configuration | ||
>>> configuration = GPTJConfig() | ||
>>> # Initializing a model from the configuration | ||
>>> model = GPTJModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "gptj" | ||
attribute_map = { | ||
"max_position_embeddings": "n_positions", | ||
"hidden_size": "n_embd", | ||
"num_attention_heads": "n_head", | ||
"num_hidden_layers": "n_layer", | ||
} | ||
|
||
def __init__( | ||
self, | ||
vocab_size=50400, | ||
n_positions=2048, | ||
n_embd=4096, | ||
n_layer=28, | ||
n_head=16, | ||
rotary_dim=64, | ||
n_inner=None, | ||
activation_function="gelu_new", | ||
resid_pdrop=0.0, | ||
embd_pdrop=0.0, | ||
attn_pdrop=0.0, | ||
layer_norm_epsilon=1e-5, | ||
initializer_range=0.02, | ||
use_cache=True, | ||
bos_token_id=50256, | ||
eos_token_id=50256, | ||
tie_word_embeddings=False, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.n_positions = n_positions | ||
self.n_embd = n_embd | ||
self.n_layer = n_layer | ||
self.n_head = n_head | ||
self.n_inner = n_inner | ||
self.rotary_dim = rotary_dim | ||
self.activation_function = activation_function | ||
self.resid_pdrop = resid_pdrop | ||
self.embd_pdrop = embd_pdrop | ||
self.attn_pdrop = attn_pdrop | ||
self.layer_norm_epsilon = layer_norm_epsilon | ||
self.initializer_range = initializer_range | ||
self.use_cache = use_cache | ||
|
||
self.bos_token_id = bos_token_id | ||
self.eos_token_id = eos_token_id | ||
|
||
super().__init__( | ||
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs | ||
) | ||
|
||
|
||
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig | ||
class GPTJOnnxConfig(OnnxConfigWithPast): | ||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
task: str = "default", | ||
patching_specs: List[PatchingSpec] = None, | ||
use_past: bool = False, | ||
): | ||
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) | ||
if not getattr(self._config, "pad_token_id", None): | ||
# TODO: how to do that better? | ||
self._config.pad_token_id = 0 | ||
|
||
@property | ||
def inputs(self) -> Mapping[str, Mapping[int, str]]: | ||
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) | ||
if self.use_past: | ||
self.fill_with_past_key_values_(common_inputs, direction="inputs") | ||
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} | ||
else: | ||
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} | ||
|
||
return common_inputs | ||
|
||
@property | ||
def num_layers(self) -> int: | ||
return self._config.n_layer | ||
|
||
@property | ||
def num_attention_heads(self) -> int: | ||
return self._config.n_head | ||
|
||
def generate_dummy_inputs( | ||
self, | ||
tokenizer: PreTrainedTokenizer, | ||
batch_size: int = -1, | ||
seq_length: int = -1, | ||
is_pair: bool = False, | ||
framework: Optional[TensorType] = None, | ||
) -> Mapping[str, Any]: | ||
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( | ||
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | ||
) | ||
|
||
# We need to order the input in the way they appears in the forward() | ||
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) | ||
|
||
# Need to add the past_keys | ||
if self.use_past: | ||
if not is_torch_available(): | ||
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | ||
else: | ||
import torch | ||
|
||
batch, seqlen = common_inputs["input_ids"].shape | ||
# Not using the same length for past_key_values | ||
past_key_values_length = seqlen + 2 | ||
past_shape = ( | ||
batch, | ||
self.num_attention_heads, | ||
past_key_values_length, | ||
self._config.hidden_size // self.num_attention_heads, | ||
) | ||
ordered_inputs["past_key_values"] = [ | ||
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) | ||
] | ||
|
||
ordered_inputs["attention_mask"] = common_inputs["attention_mask"] | ||
if self.use_past: | ||
mask_dtype = ordered_inputs["attention_mask"].dtype | ||
ordered_inputs["attention_mask"] = torch.cat( | ||
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 | ||
) | ||
|
||
return ordered_inputs | ||
|
||
@property | ||
def default_onnx_opset(self) -> int: | ||
return 13 |
Oops, something went wrong.