Skip to content

dakuang/symnmf

Repository files navigation

Symmetric NMF for graph clustering

Symmetric nonnegative matrix factorization (SymNMF) is an unsupervised algorithm for graph clustering, and has found numerous use cases with itself or its extensions (Google Scholar), many of which are in bioinformatics and genomic study.

This Matlab package is developed for the following paper:

Da Kuang, Chris Ding, Haesun Park,
Symmetric Nonnegative Matrix Factorization for Graph Clustering,
The 12th SIAM International Conference on Data Mining (SDM '12), pp. 106--117, 2012.

and a journal version:

Da Kuang, Sangwoon Yun, Haesun Park,
SymNMF: Nonnegative low-rank approximation of a similarity matrix for graph clustering,
Journal of Global Optimization, 62(3):545-574, 2015.

Please cite this paper if you find the code useful.

Problem Statement

SymNMF is defined as:

    min_H f(H) = ||A - HH'||_F^2 subject to H >= 0

where the input A is an N-by-N symmetric matrix containing pairwise similarity values, and the output H is an N-by-K nonnegative matrix indicating clustering assignment. SymNMF uses the same input similarity matrix A as in spectral clustering, but imposes different constraint on H.

All these Matlab functions are documented. To get started, run the script test.m Please find the helper texts at the beginning of each M-file for more options.

Basic usage

To run SymNMF on a similarity matrix:

H = symnmf_newton(A, k)

or:

H = symnmf_anls(A, k)

To run SymNMF on a data matrix for graph clustering:

idx = symnmf_cluster(X, k)

Please refer to the documentation for more options. A summary of the functions in this package is listed below:

User functions (API):

  • symnmf_newton.m: Newton-like algorithm for SymNMF, accepting a similarity matrix as input
  • symnmf_anls.m: ANLS algorithm for SymNMF, accepting a similarity matrix as input
  • symnmf_cluster.m: A wrapper for graph clustering, accepting a data matrix as input

Auxiliary files:

  • scale_dist3.m: Computes the affinity matrix of a dense graph with Gaussian similarity
  • scale_dist3_knn.m: Computes the affinity matrix of a sparse graph with Gaussian similarity
  • inner_product_knn.m: Computes the affinity matrix of a sparse graph with inner product similarity
  • dist2.m: Computes a matrix of squared Euclidean distance values
  • nnlsm_blockpivot.m: The block pivoting algorithm for nonnegative least squares (courtesy of Jingu Kim)
  • graph.data: A simple graph clustering example
  • test.m: A test script running on the graph.data example

Which algorithm to choose

If the similarity matrix is dense (i.e. N is not extremely large and an N-by-N dense matrix can be stored into memory), then we recommend symnmf_newton.

If the similarity matrix is sparse (especially when an N-by-N dense matrix cannot be stored into memory), then we recommend symnmf_anls. (the default option in symnmf_cluster)

symnmf_newton will generate more accurate solutions, whereas symnmf_anls is generally faster and applicable to larger problems. Please find more options for further acceleration in the helper text of symnmf_anls.

NOTE

The documentation (as well as the cited paper) differentiates the term affinity matrix and the term similarity matrix.

An affinity matrix contains the raw edge weights in a graph, whereas a similarity matrix is formed based on the affinity matrix and is directly fed into symnmf_newton.

For example, scale_dist3, scale_dist3_knn, inner_product_knn routines all compute the affinity matrix; the similarity matrix in normalized cut is a normalized version of the affinity matrix.

About

Symmetric NMF for graph clustering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages