Skip to content

da-gazzi/torchstat

This branch is 1 commit ahead of lyakaap/torchstat:master.

Folders and files

NameName
Last commit message
Last commit date
Apr 14, 2020
Oct 28, 2018
Oct 31, 2018
Oct 26, 2018
Nov 2, 2018
Nov 2, 2018
Oct 28, 2018
Oct 26, 2018
Oct 26, 2018
Oct 28, 2018
Oct 26, 2018

Repository files navigation

Build Status

torchstat

This is a lightweight neural network analyzer based on PyTorch. It is designed to make building your networks quick and easy, with the ability to debug them. Note: This repository is currently under development. Therefore, some APIs might be changed.

This tools can show

  • Total number of network parameters
  • Theoretical amount of floating point arithmetics (FLOPs)
  • Theoretical amount of multiply-adds (MAdd)
  • Memory usage

Installing

There're two ways to install torchstat into your environment.

  • Install it via pip.
$ pip install torchstat
  • Install and update using setup.py after cloning this repository.
$ python3 setup.py install

A Simple Example

If you want to run the torchstat asap, you can call it as a CLI tool if your network exists in a script. Otherwise you need to import torchstat as a module.

CLI tool

$ torchstat masato$ torchstat -f example.py -m Net
[MAdd]: Dropout2d is not supported!
[Flops]: Dropout2d is not supported!
[Memory]: Dropout2d is not supported!
      module name  input shape output shape     params memory(MB)           MAdd         Flops  MemRead(B)  MemWrite(B) duration[%]   MemR+W(B)
0           conv1    3 224 224   10 220 220      760.0       1.85   72,600,000.0  36,784,000.0    605152.0    1936000.0      57.49%   2541152.0
1           conv2   10 110 110   20 106 106     5020.0       0.86  112,360,000.0  56,404,720.0    504080.0     898880.0      26.62%   1402960.0
2      conv2_drop   20 106 106   20 106 106        0.0       0.86            0.0           0.0         0.0          0.0       4.09%         0.0
3             fc1        56180           50  2809050.0       0.00    5,617,950.0   2,809,000.0  11460920.0        200.0      11.58%  11461120.0
4             fc2           50           10      510.0       0.00          990.0         500.0      2240.0         40.0       0.22%      2280.0
total                                        2815340.0       3.56  190,578,940.0  95,998,220.0      2240.0         40.0     100.00%  15407512.0
===============================================================================================================================================
Total params: 2,815,340
-----------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 3.56MB
Total MAdd: 190.58MMAdd
Total Flops: 96.0MFlops
Total MemR+W: 14.69MB

If you're not sure how to use a specific command, run the command with the -h or –help switches. You'll see usage information and a list of options you can use with the command.

Module

from torchstat import stat
import torchvision.models as models

model = models.resnet18()
stat(model, (3, 224, 224))

Features & TODO

Note: These features work only nn.Module. Modules in torch.nn.functional are not supported yet.

  • FLOPs
  • Number of Parameters
  • Total memory
  • Madd(FMA)
  • MemRead
  • MemWrite
  • Model summary(detail, layer-wise)
  • Export score table
  • Arbitrary input shape

For the supported layers, check out the details.

Requirements

  • Python 3.6+
  • Pytorch 0.4.0+
  • Pandas 0.23.4+
  • NumPy 1.14.3+

References

Thanks to @sovrasov for the initial version of flops computation, @ceykmc for the backbone of scripts.

About

Model analyzer in PyTorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%