Skip to content
This repository was archived by the owner on Oct 23, 2024. It is now read-only.

Conversation

@samvantran
Copy link

@samvantran samvantran commented Aug 29, 2018

This reverts commit 3d31341. Further testing and integration tests are required if we are to support this via DC/OS Spark CLI

Copy link

@elezar elezar left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The revert looks good. To be clear @samvantran, this has not yet been released as a Spark update and as such does not affect any users?

@samvantran
Copy link
Author

Correct

@samvantran samvantran merged commit f8f0e5d into custom-branch-2.2.1-X Aug 30, 2018
@samvantran samvantran deleted the revert-proxy-user branch August 30, 2018 15:12
farhan5900 pushed a commit that referenced this pull request Oct 2, 2020
### What changes were proposed in this pull request?

To support formatted explain for AQE.

### Why are the changes needed?

AQE does not support formatted explain yet. It's good to support it for better user experience, debugging, etc.

Before:
```
== Physical Plan ==
AdaptiveSparkPlan (1)
+- * HashAggregate (unknown)
   +- CustomShuffleReader (unknown)
      +- ShuffleQueryStage (unknown)
         +- Exchange (unknown)
            +- * HashAggregate (unknown)
               +- * Project (unknown)
                  +- * BroadcastHashJoin Inner BuildRight (unknown)
                     :- * LocalTableScan (unknown)
                     +- BroadcastQueryStage (unknown)
                        +- BroadcastExchange (unknown)
                           +- LocalTableScan (unknown)

(1) AdaptiveSparkPlan
Output [4]: [k#7, count(v1)#32L, sum(v1)#33L, avg(v2)#34]
Arguments: HashAggregate(keys=[k#7], functions=[count(1), sum(cast(v1#8 as bigint)), avg(cast(v2#19 as bigint))]), AdaptiveExecutionContext(org.apache.spark.sql.SparkSession104ab57b), [PlanAdaptiveSubqueries(Map())], false
```

After:
```
== Physical Plan ==
 AdaptiveSparkPlan (14)
 +- * HashAggregate (13)
    +- CustomShuffleReader (12)
       +- ShuffleQueryStage (11)
          +- Exchange (10)
             +- * HashAggregate (9)
                +- * Project (8)
                   +- * BroadcastHashJoin Inner BuildRight (7)
                      :- * Project (2)
                      :  +- * LocalTableScan (1)
                      +- BroadcastQueryStage (6)
                         +- BroadcastExchange (5)
                            +- * Project (4)
                               +- * LocalTableScan (3)

 (1) LocalTableScan [codegen id : 2]
 Output [2]: [_1#x, _2#x]
 Arguments: [_1#x, _2#x]

 (2) Project [codegen id : 2]
 Output [2]: [_1#x AS k#x, _2#x AS v1#x]
 Input [2]: [_1#x, _2#x]

 (3) LocalTableScan [codegen id : 1]
 Output [2]: [_1#x, _2#x]
 Arguments: [_1#x, _2#x]

 (4) Project [codegen id : 1]
 Output [2]: [_1#x AS k#x, _2#x AS v2#x]
 Input [2]: [_1#x, _2#x]

 (5) BroadcastExchange
 Input [2]: [k#x, v2#x]
 Arguments: HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint))), [id=#x]

 (6) BroadcastQueryStage
 Output [2]: [k#x, v2#x]
 Arguments: 0

 (7) BroadcastHashJoin [codegen id : 2]
 Left keys [1]: [k#x]
 Right keys [1]: [k#x]
 Join condition: None

 (8) Project [codegen id : 2]
 Output [3]: [k#x, v1#x, v2#x]
 Input [4]: [k#x, v1#x, k#x, v2#x]

 (9) HashAggregate [codegen id : 2]
 Input [3]: [k#x, v1#x, v2#x]
 Keys [1]: [k#x]
 Functions [3]: [partial_count(1), partial_sum(cast(v1#x as bigint)), partial_avg(cast(v2#x as bigint))]
 Aggregate Attributes [4]: [count#xL, sum#xL, sum#x, count#xL]
 Results [5]: [k#x, count#xL, sum#xL, sum#x, count#xL]

 (10) Exchange
 Input [5]: [k#x, count#xL, sum#xL, sum#x, count#xL]
 Arguments: hashpartitioning(k#x, 5), true, [id=#x]

 (11) ShuffleQueryStage
 Output [5]: [sum#xL, k#x, sum#x, count#xL, count#xL]
 Arguments: 1

 (12) CustomShuffleReader
 Input [5]: [k#x, count#xL, sum#xL, sum#x, count#xL]
 Arguments: coalesced

 (13) HashAggregate [codegen id : 3]
 Input [5]: [k#x, count#xL, sum#xL, sum#x, count#xL]
 Keys [1]: [k#x]
 Functions [3]: [count(1), sum(cast(v1#x as bigint)), avg(cast(v2#x as bigint))]
 Aggregate Attributes [3]: [count(1)#xL, sum(cast(v1#x as bigint))#xL, avg(cast(v2#x as bigint))#x]
 Results [4]: [k#x, count(1)#xL AS count(v1)#xL, sum(cast(v1#x as bigint))#xL AS sum(v1)#xL, avg(cast(v2#x as bigint))#x AS avg(v2)#x]

 (14) AdaptiveSparkPlan
 Output [4]: [k#x, count(v1)#xL, sum(v1)#xL, avg(v2)#x]
 Arguments: isFinalPlan=true
```

### Does this PR introduce any user-facing change?

No, this should be new feature along with AQE in Spark 3.0.

### How was this patch tested?

Added a query file: `explain-aqe.sql` and a unit test.

Closes apache#28271 from Ngone51/support_formatted_explain_for_aqe.

Authored-by: yi.wu <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
(cherry picked from commit 8fbfdb3)
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants